Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T17:13:04.392Z Has data issue: false hasContentIssue false

SiO maser line ratios in the BAaDE Survey

Published online by Cambridge University Press:  07 February 2024

Megan O. Lewis*
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland 00-716.
Ylva M. Pihlström
Affiliation:
University of New Mexico, Albuquerque, NM, USA 87131
Loránt O. Sjouwerman
Affiliation:
National Radio Astronomy Observatory, Socorro, NM, USA 87801

Abstract

Multi-transition SiO maser emission has been detected in over 10 thousand evolved stars across the plane of the Milky Way by the Bulge Asymmetries and Dynamical Evolution (BAaDE) survey. In addition to the large source catalog of the survey, the frequency coverage is also unprecedented: the J=1-0 (43 GHz) data cover seven separate transitions of SiO, and the J=2-1 (86 GHz) data cover ten SiO transitions. In contrast, most other SiO maser data only probe the SiO v=1 and v=2 at 43 GHz and/or the v=1 at 86 GHz. Our extended range allows for the derivation of SiO line ratios for a huge population of evolved stars, including those derived from rare transitions associated with 29SiO and 30SiO isotopologues. We examine how these ratios are affected by the specific combinations of transitions that are detected in a single source. Furthermore, we present a class of ‘isotopologue dominated’ sources where the 29SiO transitions are the brightest in the 43 GHz spectrum. Finally, using Optical Gravitational Lensing Experiment (OGLE) light curves of our maser stars, changes in line ratios as a function of stellar phase are discussed.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcolea, J., Bujarrabal, V., & Gomez-Gonzalez, J. 1990, A&A, 231, 431 Google Scholar
Cho, S.-H. & Ukita, N. 1995, PASJ, 47, 1 Google Scholar
Desmurs, J. F., Bujarrabal, V., Lindqvist, M., Alcolea, J., Soria-Ruiz, R., & Bergman, P. 2014, A&A, 565, A127 Google Scholar
Dike, V., Morris, M. R., Rich, R. M., Lewis, M. O., Quiroga-Nuñez, L. H., Stroh, M. C., Trapp, A. C., & Claussen, M. J. 2021, AJ, 161, 111 10.3847/1538-3881/abd479CrossRefGoogle Scholar
Lewis, M. O., Pihlström, Y. M., Sjouwerman, L. O., & Quiroga-Nuñez, L. H. 2020, ApJ, 901, 98 10.3847/1538-4357/abaf46CrossRefGoogle Scholar
Nyman, L. A., Hall, P. J., & Le Bertre, T. 1993, A&A, 280, 551 Google Scholar
Rizzo, J. R., Cernicharo, J., & Garcia-Miro, C. 2021, ApJS, 253, 44 10.3847/1538-4365/abe469CrossRefGoogle Scholar
Sobolev, A. M., Ladeyschikov, D. A., & Nakashima, J 2019, Research in Astronomy and Astrophysics, 19, 34 10.1088/1674-4527/19/3/34CrossRefGoogle Scholar
Stroh, M. C., Pihlström, Y. M., Sjouwerman, L. O., Lewis, M. O., Claussen, M. J., Morris, M. R., & Rich, R. M. 2019, ApJS, 244, 25 10.3847/1538-4365/ab3c35CrossRefGoogle Scholar