Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T06:33:46.812Z Has data issue: false hasContentIssue false

Shock breakout in winds of red supergiants: Type IIP supernovae

Published online by Cambridge University Press:  16 August 2023

Alak Ray
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
Harita Palani Balaji
Affiliation:
IISER, Pune 411008, India
Adarsh Raghu
Affiliation:
IISER, Kolkata 741246, India
Gururaj Wagle
Affiliation:
Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

When a supernova shockwave launched deep inside the star exits the surface, it probes the circumstellar medium established by prior mass loss from the pre supernova star. The bright electromagnetic display accompanying the shock breakout is influenced by the properties of the star and scripts the history of the stellar mass loss. We investigate with MESA and STELLA codes the radiative display resulting from a set of progenitors that we evolved to core collapse. We simulate with different internal convective overshoot and compositional mixing and two sets of mass loss schema, one the standard “Dutch” scheme and another, an enhanced, episodic mass loss at a late stage. Shock breakout from the star shows double peaked bolometric light curves for the Dutch wind, as well as high velocity ejecta accelerated during shock breakout. We contrast the breakout flash from an optically thick CSM with that of the rarified medium.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chevalier, R. A. & Irwin, C. M. 2021, ApJ Letters, 914, L25. doi: 10.3847/2041-8213/ac0884 CrossRefGoogle Scholar
Chevalier, R. A. & Irwin, C. M. 2011, ApJ Letters, 729, L6. doi: 10.1088/2041-8205/729/1/L6 CrossRefGoogle Scholar
Das, S. & Ray, A. 2017, ApJ, 851, 138. doi: 10.3847/1538-4357/aa97e1 CrossRefGoogle Scholar
Ohyama, N. 1963, Progress of Theoretical Physics, 30, 170. doi: 10.1143/PTP.30.170 CrossRefGoogle Scholar
Palani Balaji, H., Ray, A., Wagle, G. A., et al. 2022, ApJ, 933, 194. doi: 10.3847/1538-4357/ac7528 CrossRefGoogle Scholar
Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34. doi: 10.3847/1538-4365/aaa5a8 CrossRefGoogle Scholar
Smith, N., Li, W., Filippenko, A. V., et al. 2011, MNRAS, 412, 1522. doi: 10.1111/j.1365-2966.2011.17229.x CrossRefGoogle Scholar
Wagle, G. A., Ray, A., & Raghu, A. 2020, ApJ, 894, 118. doi: 10.3847/1538-4357/ab8bd5 CrossRefGoogle Scholar
Wagle, G. A. & Ray, A. 2020, ApJ, 889, 86. doi: 10.3847/1538-4357/ab5d2c CrossRefGoogle Scholar
Wagle, G. A., Ray, A., Dev, A., et al. 2019, ApJ, 886, 27. doi: 10.3847/1538-4357/ab4a19 CrossRefGoogle Scholar
Waxman, E. & Katz, B. 2017, Handbook of Supernovae, 967. doi: 10.1007/978-3-319-21846-5_33 CrossRefGoogle Scholar