Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-b2xwp Total loading time: 0.424 Render date: 2022-09-30T04:16:26.100Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

The science of EChO

Published online by Cambridge University Press:  10 November 2011

Giovanna Tinetti
University College London, Gower street, London WC1E 6BT, UK email:
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are?

In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life.

The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole.

EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates.

Contributed Papers
Copyright © International Astronomical Union 2011


Ábrahám, P., Juhász, A., Dullemond, C. P., Kóspál, Á., van Boekel, R., Bouwman, J., Henning, T., Moór, A., Mosoni, L., Sicilia-Aguilar, A., & Sipos, N. 2009, Nature, 459, 224CrossRefGoogle Scholar
Adams, E. R., Seager, S., & Elkins-Tanton, L. 2008, ApJ, 673, 1160CrossRefGoogle Scholar
Banzatti, A., Testi, L., Isella, A., Natta, A., Neri, R., & Wilner, D. J. 2011, A&A, 525, A12Google Scholar
Baraffe, I., Chabrier, G., & Barman, T. 2008, A&A, 482, 315Google Scholar
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701Google Scholar
Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466CrossRefGoogle Scholar
Burrows, A., Budaj, J., & Hubeny, I. 2007, ApJ, 668, 671CrossRefGoogle Scholar
Charbonneau, D., Brown, T., Latham, D., & Mayor, M. 2000, ApJ, 529, L45CrossRefGoogle Scholar
Cho, J., Menou, K., Hansen, B. M. S., & Seager, S. 2003, ApJL, 587, L117CrossRefGoogle Scholar
Correia, A. & Laskar, J. 2004, Nature, 429, 848CrossRefGoogle Scholar
GarcíaMuñoz, A. Muñoz, A. 2007, Plan. Space Sci., 55, 1426CrossRefGoogle Scholar
Grasset, O., Schneider, J., & Sotin, C. 2009, ApJ, 693, 722CrossRefGoogle Scholar
Grenfell, J. L., Rauer, H., Selsis, F., Kaltenegger, L., Beichman, C., Danchi, W., Eiroa, C., Fridlund, M., Henning, T., Herbst, T., Lammer, H., Léger, A., Liseau, R., Lunine, J., Paresce, F., Penny, A., Quirrenbach, A., Röttgering, H., Schneider, J., Stam, D., Tinetti, G., & White, G. J. 2010, Astrobiology, 10, 77CrossRefGoogle Scholar
Guillot, T. 2005, Annu. Rev. Earth Plan. Sci., 33, 493CrossRefGoogle Scholar
Guillot, T. 2008, Physica Scripta, T130, 014023CrossRefGoogle Scholar
Guillot, T. 2010, A&A, 520, A27+Google Scholar
Guillot, T., Santos, N. C., Pont, F., Iro, N., Melo, C., & Ribas, I. 2006, A&A, 453, L21Google Scholar
Guillot, T. & Showman, A. P. 2002, A&A, 385, 156Google Scholar
Heng, K, Menou, K, Phillipps, P. J. 2011, MNRAS, 413, 2380CrossRefGoogle Scholar
Hubeny, I., Burrows, A., & Sudarsky, D. 2003, ApJ, 594, 1011CrossRefGoogle Scholar
Ikoma, M., Guillot, T., Genda, H., Tanigawa, T., & Ida, S. 2006, ApJ, 650, 1150CrossRefGoogle Scholar
Kipping, D. 2009 a, MNRAS, 392, 181CrossRefGoogle Scholar
Kipping, D. 2009 b, MNRAS, 396, 1797CrossRefGoogle Scholar
Koskinen, T., Aylward, A., & Miller, S. 2007, Nature, 450, 845CrossRefGoogle Scholar
Koskinen, T., Cho, J.-K., Achilleos, N., & Aylward, A. D. 2010, ApJ, 722, 178CrossRefGoogle Scholar
Léger, A., Selsis, F., Sotin, C., Guillot, T., Despois, D., Mawet, D., Ollivier, M., Labèque, A., Valette, C., Brachet, F., Chazelas, B., & Lammer, H. 2004, Icarus, 169, 499CrossRefGoogle Scholar
Liang, M.-C., Parkinson, C. D., Lee, A. Y. T., Yung, Y. L., & Seager, S. 2003, ApJL, 596, 247CrossRefGoogle Scholar
Liang, M.-C., Seager, S., Parkinson, C. D., Lee, A. Y. T., & Yung, Y. L. 2004, ApJL, 605, 61CrossRefGoogle Scholar
Line, M. R., Liang, M. C., & Yung, Y. L. 2010, ApJ, 717, 496CrossRefGoogle Scholar
Linsky, J. L., Yang, H., France, K., Froning, C. S., Green, J. C., Stocke, J. T., & Osterman, S. N. 2010, ApJ, 717, 1291CrossRefGoogle Scholar
Lissauer, J. J. & Stevenson, D. J. 2007, Protostars and Planets V, 591Google Scholar
Lodders, K. & Fegley, B. 2002, Icarus, 155, 393CrossRefGoogle Scholar
Miller, S., Stallard, T., & Smith, C., et al. 2006, Royal Society of London Transactions Series A, 364, 3121CrossRefGoogle Scholar
Mordasini, C., Alibert, Y., & Benz, W. 2009, A&A, 501, 1139Google Scholar
Moses, J. I., Visscher, C., Fortney, J. J., Lewis, N. K., Showman, A. P., Marley, M. S., Griffith, C. A., & Friedson, A. J. 2011, ApJ, 737, id.15CrossRefGoogle Scholar
Prinn, R. & Barshay, S. 1977, Science, 198, 1031CrossRefGoogle Scholar
Sato, B., Fischer, D. A., Henry, G. W., Laughlin, G., Butler, R. P., Marcy, G. W., Vogt, S. S., Bodenheimer, P., Ida, S., Toyota, E., Wolf, A., Valenti, J. A., Boyd, L. J., Johnson, J. A., Wright, J. T., Ammons, M., Robinson, S., Strader, J., McCarthy, C., Tah, K. L., & Minniti, D. 2005, ApJ, 633, 465CrossRefGoogle Scholar
Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279CrossRefGoogle Scholar
Segura, A., Kasting, J. F., Meadows, V., Cohen, M., Scalo, J., Crisp, D., Butler, R. A. H., & Tinetti, G. 2005, Astrobiology, 5, 706CrossRefGoogle Scholar
Segura, A., Krelove, K., Kasting, J. F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M., & Mlawer, E. 2003, Astrobiology, 3, 689CrossRefGoogle Scholar
Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J., & Hawley, S. 2010, Astrobiology, 10, 751CrossRefGoogle Scholar
Selsis, F., Despois, D., & Parisot, J. 2002, A&A, 388, 985Google Scholar
Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337CrossRefGoogle Scholar
Swain, M. R., Vasisht, G., Tinetti, G., Bouwman, J., Chen, P., Yung, Y., Deming, D., & Deroo, P. 2009, ApJ, 690, L114CrossRefGoogle Scholar
Thrastarson, H. T. & Cho, J. 2010, ApJ, 716, 144CrossRefGoogle Scholar
Tinetti, G., et al. 2011, Experimental Astronomy, submittedGoogle Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435, 459CrossRefGoogle Scholar
Valencia, D., O'Connell, R. J., & Sasselov, D. 2006, Icarus, 181, 545CrossRefGoogle Scholar
Valencia, D., Sasselov, D. D., & O'Connell, R. J. 2007, ApJ, 665, 1413CrossRefGoogle Scholar
Vidal-Madjar, A., Désert, J., Lecavelier des Etangs, A., Hébrard, G., Ballester, G. E., Ehrenreich, D., Ferlet, R., McConnell, J. C., Mayor, M., & Parkinson, C. D. 2004, ApJL, 604, L69CrossRefGoogle Scholar
Visscher, C., Lodders, K., & Fegley, B. 2006, ApJ, 648, 1181CrossRefGoogle Scholar
Wordsworth, R. D., Forget, F., Selsis, F., Madeleine, J.-B., Millour, E., & Eymet, V. 2010, A&A, 522, A22Google Scholar
Yelle, R. V. 2004, Icarus, 170, 167CrossRefGoogle Scholar
Yung, Y. L. & Demore, W. B., eds. 1999, Photochemistry of planetary atmospheresGoogle Scholar
Zahnle, K., Marley, M., Freedman, R., Lodders, K., & Fortney, J. 2009 a, ApJ, 701, L20CrossRefGoogle Scholar
Zahnle, K., Marley, M. S., & Fortney, J. J. 2009 b, ApJ submitted (arXiv:0911.0728)Google Scholar
You have Access
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The science of EChO
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The science of EChO
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The science of EChO
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *