Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T09:35:51.144Z Has data issue: false hasContentIssue false

The role of interstellar filaments in regulating the star formation efficiency and shaping the initial mass function

Published online by Cambridge University Press:  12 September 2016

Vera Könyves
Affiliation:
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette, France emails: vera.konyves@cea.fr, philippe.andre@cea.fr
Philippe André
Affiliation:
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette, France emails: vera.konyves@cea.fr, philippe.andre@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent surveys at infrared and submillimeter wavelengths with the Spitzer and Herschel space observatories suggest that star formation in dense molecular gas is governed by essentially the same “laws” in nearby Galactic clouds and distant external galaxies. This raises the possibility of a unified picture for star formation in the Universe from individual-cloud scales to galaxy–wide scales. We summarize the star formation scenario favored by Herschel studies of the nearest molecular clouds of the Galaxy which point to the key role of the quasi-universal filamentary structure pervading the cold interstellar medium.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

André, P., Men'shchikov, A., Bontemps, S., et al. 2010, A&A 518 L102 Google Scholar
André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in PPVI, ed. Beuther, H. et al., 27Google Scholar
Arzoumanian, D., André, P., Didelon, P., et al. 2011, A&A, 529, L6 Google Scholar
Chabrier, G. 2005, ASSL, 327, 41 Google Scholar
Evans, N. J. II, Heiderman, A., & Vutisalchavakul, N. 2014, ApJ, 782, 114 CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271 CrossRefGoogle Scholar
Hartmann, L. 2002, ApJ, 578, 914 CrossRefGoogle Scholar
Heiderman, A., Evans, N. J. II, Allen, L. E., et al. 2010, ApJ, 723, 1019 CrossRefGoogle Scholar
Henning, T., Linz, H., Krause, O., et al. 2010, A&A, 518, L95 Google Scholar
Inutsuka, S.-I. & Miyama, S. M. 1997, ApJ, 480, 681 CrossRefGoogle Scholar
Koch, E. W. & Rosolowsky, E. W. 2015, MNRAS, 452, 3435 CrossRefGoogle Scholar
Könyves, V., André, P., Men'shchikov, A., et al. 2010, A&A 518 L106 Google Scholar
Könyves, V., André, P., Men'shchikov, A., et al. 2015, A&A, in press, arXiv:1507.05926Google Scholar
Kramer, C., Stutzki, J., Rohrig, R., & Corneliussen, U. 1998, A&A, 329, 249 Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231 CrossRefGoogle Scholar
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687 CrossRefGoogle Scholar
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ, 745, 190 CrossRefGoogle Scholar
Longmore, S. N., Bally, J., Testi, L., et al. 2013, MNRAS, 429, 987 CrossRefGoogle Scholar
Maury, A. J., André, P., Men'shchikov, , et al. 2011, A&A, 535, A77 Google Scholar
Men'shchikov, A., André, P., Didelon, P., et al. 2010, A&A, 518, L103 Google Scholar
Men'shchikov, A., André, P., Didelon, P., et al. 2012, A&A, 542, A81 Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100 Google Scholar
Motte, F., Zavagno, A., Bontemps, S., et al. 2010, A&A, 518, L77 Google Scholar
Myers, P. C. 2009, ApJ, 700, 1609 CrossRefGoogle Scholar
Palmeirim, P., André, P., Kirk, J., et al. 2013, A&A, 550, A38 Google Scholar
Schneider, S. & Elmegreen, B. G. 1979, ApJs, 41, 87 CrossRefGoogle Scholar
Starck, J. L., Donoho, D. L., & Candès, E. J. 2003, A&A, 398, 785 Google Scholar
Sousbie, T. 2011, MNRAS, 414, 350 CrossRefGoogle Scholar