Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T16:54:55.788Z Has data issue: false hasContentIssue false

Recovering the Star Formation History of IC1613 Dwarf Galaxy Using Evolved Stars

Published online by Cambridge University Press:  30 October 2019

Seyed Azim Hashemi
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran email: hashemi_seyedazim@physics.sharif.edu School of Astronomy, Institute for Research in Fundamental Sciences(IPM), Tehran, 19395-5531, Iran email: atefeh@ipm.ir
Atefeh Javadi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences(IPM), Tehran, 19395-5531, Iran email: atefeh@ipm.ir
Jacco Th. van Loon
Affiliation:
Lennard-Jones Laboratories, Keele University, ST5 5BG, UK email: j.t.van.loon@keele.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour–magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age–metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC1613 over the past 5 Gyr.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bica, E. 1988, A&A, 195, 76 Google Scholar
Boyer, M. L., et al. 2015, ApJ, 800, 17 10.1088/0004-637X/800/1/51CrossRefGoogle Scholar
Dolphin, A. E., 1997, New Astron., 2, 397 10.1016/S1384-1076(97)00029-8CrossRefGoogle Scholar
Dolphin, A. E. 2002, MNRAS, 332, 91 10.1046/j.1365-8711.2002.05271.xCrossRefGoogle Scholar
Fraser, O. J., Hawley, S. L., Cook, K. H., & Keller, S. C. 2005, AJ, 129, 768 10.1086/426749CrossRefGoogle Scholar
Fraser, O. J., Hawley, S. L., & Cook, K. H. 2008, AJ, 136, 1242 10.1088/0004-6256/136/3/1242CrossRefGoogle Scholar
Ganda, K., Peletier, R. F., Balcells, M., & Falcón-Barroso, J. 2009, MNRAS, 395, 1669 10.1111/j.1365-2966.2009.14658.xCrossRefGoogle Scholar
Gallart, C., Aparicio, A., Bertelli, G., & Chiosi, C., 1996, AJ, 112, 1950 10.1086/118154CrossRefGoogle Scholar
Golshan, R. H., Javadi, A., van Loon, J. Th., Khosroshahi, H., & Saremi, E. 2017, MNRAS, 466, 1764 10.1093/mnras/stw3174CrossRefGoogle Scholar
Hashemi, S. A., Javadi, A. & van Loon, J. Th. 2017, MemSAIt, 88, 436 Google Scholar
Javadi, A., van Loon, J. Th., & Mirtorabi, M. T. 2011a, ASPC, 445, 497 Google Scholar
Javadi, A., van Loon, J. Th., & Mirtorabi, M. T. 2011b, MNRAS, 414, 3394 10.1111/j.1365-2966.2011.18638.xCrossRefGoogle Scholar
Javadi, A., van Loon, J. Th., Khosroshahi, H., & Mirtorabi, M. T. 2013, MNRAS, 432, 2824 10.1093/mnras/stt640CrossRefGoogle Scholar
Javadi, A., van Loon, J. Th., Khosroshahi, H., Tabatabaei, F., Golshan, R. H., & Rashidi, M. 2017, MNRAS, 464, 2103 10.1093/mnras/stw2463CrossRefGoogle Scholar
Kiss, L. L., Szabó, G. M. & Bedding, T. R. 2006, MNRAS, 372, 1721 10.1111/j.1365-2966.2006.10973.xCrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231 10.1046/j.1365-8711.2001.04022.xCrossRefGoogle Scholar
Lake, G., & Skillman, E. D. 1989, AJ, 98, 1274 10.1086/115215CrossRefGoogle Scholar
MacArthur, L. A., Courteau, S., Bell, E., & Holtzman, J. A. 2004, ApJS, 152, 175 10.1086/383525CrossRefGoogle Scholar
Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., & Granato, G. L. 2008, A&A, 482, 883 Google Scholar
Marigo, P., Girardi, L., Bressan, A., Rosenfield, P., Aringer, B., Chen, Y., & Trabucchi, M. 2017, ApJ, 835, 77 CrossRefGoogle Scholar
Menzies, J. W., Whitelock, P. A., & Feast, M. W. 2015, MNRAS, 452, 910 10.1093/mnras/stv1310CrossRefGoogle Scholar
Pierce, M. J., Jurcevic, J. S. & Crabtree, D. 2000, MNRAS, 313, 271 10.1046/j.1365-8711.2000.03196.xCrossRefGoogle Scholar
Pickles, A. J. 1985, ApJ, 296, 340 10.1086/163454CrossRefGoogle Scholar
Pérez, I. & Sánchez-Blázquez, P. 2011, A&A, 529, A64 Google Scholar
Rezaei Kh, S., Javadi, A., Khosroshahi, H., & van Loon, J. Th. 2014, MNRAS, 445, 2214 10.1093/mnras/stu1807CrossRefGoogle Scholar
Ruiz-Lara, T., et al., 2015, A&A, 583, A60 Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 CrossRefGoogle Scholar
Schröder, K. P., Winters, J. M. & Sedlmayr, E. 1999, A&A, 349, 898 Google Scholar
Skillman, E. D., et al. 2014, ApJ, 786, 44 10.1088/0004-637X/786/1/44CrossRefGoogle Scholar
Soszyński, I., et al. 2009, AcA, 59, 239 Google Scholar
Tosi, M., Greggio, L., & Focardi, P., 1989, Ap&SS, 156, 295 Google Scholar