Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T09:48:31.398Z Has data issue: false hasContentIssue false

Radiative Feedback Effects during Cosmic Reionization

Published online by Cambridge University Press:  12 October 2016

David Sullivan
Affiliation:
Astronomy Centre, Department of Physics & Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom email: D.Sullivan@sussex.ac.uk
Ilian T. Iliev
Affiliation:
Astronomy Centre, Department of Physics & Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom email: D.Sullivan@sussex.ac.uk Speaker, email: I.T.Iliev@sussex.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present coupled radiation hydrodynamical simulations of the epoch of reionization, aimed at probing self-feedback on galactic scales. Unlike previous works, which assume a (quasi) homogeneous UV background, we self-consistently evolve both the radiation field and the gas to model the impact of previously unresolved processes such as spectral hardening and self-shielding. We find that the characteristic halo mass with a gas fraction half the cosmic mean, Mc(z), a quantity frequently used in semi-analytical models of galaxy formation, is significantly larger than previously assumed. While this results in an increased suppression of star formation in the early Universe, our results are consistent with the extrapolated stellar abundance matching models from Moster et al. 2013.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alvarez, M. a. & Abel, T. (2007). MNRAS, 380 (654).Google Scholar
Aubert, D. & Teyssier, R. (2008). MNRAS, 387 (1).Google Scholar
Aubert, D. & Teyssier, R. (2010). ApJ, 724 (1).Google Scholar
Behroozi, S., Wechsler, R. H., & Wu, H. (2013). ApJ, 762 (2).Google Scholar
Behroozi, et al. (2013). ApJ, 763 (1).Google Scholar
Bryan, G. L. & Norman, M. L. (1998). ApJ, 495 (1).Google Scholar
Choudhury, T. R., Haehnelt, M. G., & Regan, J. (2009). MNRAS, 394 (2).Google Scholar
Ciardi, B., Ferrara, A., & White, S. D. M. (2003). MNRAS, 344 (1).Google Scholar
Efstathiou, G. (1992). MNRAS, 256 (2).Google Scholar
Faucher-Giguére, C.-A., Lidz, A., Zaldarriaga, M., & Hernquist, L. (2009). ApJ, 703 (2).Google Scholar
Geil, P. M. & Wyithe, S. (2008). MNRAS, 386 (3).Google Scholar
Gnedin, N. Y. (2000a). ApJ, 542 (2).Google Scholar
Gnedin, N. Y. (2000b). ApJ, 535 (2).Google Scholar
Gnedin, N. Y. & Ostriker, J. P. (1997). ApJ, 486 (2).Google Scholar
Haardt, F. & Madau, P. (2001). Clust. Galaxies High Redshift Universe Obs. X-Rays, ed. D. M. Neumann J. T. T. Van (CEA Saclay).Google Scholar
Hoeft, M., Yepes, G., Gottl, S., & Ring, C. (2006). MNRAS, 371 (1).Google Scholar
Iliev, I. T., Mellema, G., Pen, U., Merz, H., Shapiro, P. R., & Alvarez, M. A. (2006). MNRAS, 369 (4).Google Scholar
Iliev, I. T., Mellema, G., Shapiro, P. R., & Pen, U.-l. (2007). MNRAS, 376 (2).Google Scholar
McQuinn, M., Lidz, A., Zahn, O., Dutta, S., & Hernquist, L. (2007). MNRAS, 377 (3).Google Scholar
Mellema, G., Iliev, I. T., Pen, U.-L., & Shapiro, P. R. (2006). MNRAS, 372 (2).CrossRefGoogle Scholar
Mesinger, A. & Furlanetto, S. (2007). ApJ, 669 (2).Google Scholar
Miralda-Escude, J. & Rees, M. J. (1997). ApJ, 497 (1).Google Scholar
Moster, B. P., Naab, T., & White, S. D. M. (2013). 20.Google Scholar
Okamoto, T., Gao, L., & Theuns, T. (2008). 10.Google Scholar
Rees, M. J. (1986). MNRAS, 218 (1).Google Scholar
Rees, M. J. (1999). Phys. Rep., 333.Google Scholar
Reynolds, D. R., Hayes, J. C., Paschos, P., & Norman, M. L. (2009). J. Comput. Phys., 228 (18).Google Scholar
Rosdahl, J., Blaizot, J., Aubert, D., Stranex, T., & Teyssier, R. (2013). MNRAS, 436 (3).Google Scholar
Shapiro, P. R., Giroux, M. L., & Babul, A. (1994). ApJ, 427 (1).Google Scholar
Springel, et al. (2005). Nature, 435(7042).Google Scholar
Teyssier, R. (2002). A&A, 385.Google Scholar
Trujillo-Gomez, S., Klypin, A., Col, P., Ceverino, D., Arraki, S., & Primack, J. (2013). pre-print arXiv:1311.2910.Google Scholar
Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., & Norman, M. L. (2011). ApJ, 192 (1).Google Scholar
Wise, J. H. & Abel, T. (2010). 37.Google Scholar
Zahn, O., Lidz, A., McQuinn, M., Dutta, S., Hernquist, L., Zaldarriaga, M., & Furlanetto, S. R. (2007). ApJ, 654 (1).CrossRefGoogle Scholar