Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T07:52:43.213Z Has data issue: false hasContentIssue false

Prospects of detection of the first sources with SKA using matched filters

Published online by Cambridge University Press:  08 May 2018

Raghunath Ghara*
Affiliation:
Department of Astronomy & Oskar Klein Centre, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden
T. Roy Choudhury
Affiliation:
National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune 411007, India
Kanan K. Datta
Affiliation:
Department of Physics, Presidency University, 86/1 College Street, Kolkata - 700073, India
Garrelt Mellema
Affiliation:
Department of Astronomy & Oskar Klein Centre, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden
Samir Choudhuri
Affiliation:
National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune 411007, India
Suman Majumdar
Affiliation:
Department of Physics, Blackett Laboratory, Imperial College, London SW7 2AZ, UK
Sambit K. Giri
Affiliation:
Department of Astronomy & Oskar Klein Centre, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The matched filtering technique is an efficient method to detect H ii bubbles and absorption regions in radio interferometric observations of the redshifted 21-cm signal from the epoch of reionization and the Cosmic Dawn. Here, we present an implementation of this technique to the upcoming observations such as the SKA1-low for a blind search of absorption regions at the Cosmic Dawn. The pipeline explores four dimensional parameter space on the simulated mock visibilities using a MCMC algorithm. The framework is able to efficiently determine the positions and sizes of the absorption/H ii regions in the field of view.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Datta, K. K., Bharadwaj, S., & Choudhury, T. R.. MNRAS, 382: 809818, December 2007.Google Scholar
Datta, K. K., Friedrich, M. M., Mellema, G., Iliev, I. T., & Shapiro, P. R.. MNRAS, 424: 762778, July 2012.Google Scholar
Ghara, R., Choudhury, T. R., & Datta, K. K.. MNRAS, 447: 18061825, February 2015.Google Scholar
Ghara, R., Choudhury, T. R., & Datta, K. K.. MNRAS, 460: 827843, July 2016.Google Scholar
Ghara, R., Choudhury, T. R., Datta, K. K., & Choudhuri, S.. MNRAS, 464: 22342248, January 2017a.CrossRefGoogle Scholar
Ghara, R., Mellema, G., Giri, S. K., Choudhury, T. R., Datta, K. K., & Majumdar, S.. arXiv:1710.09397, October 2017b.Google Scholar
Giri, S. K., Mellema, G., & Ghara, R.. arXiv:1801.06550, January 2018.Google Scholar
Greig, B. & Mesinger, A.. MNRAS, 449: 42464263, June 2015.CrossRefGoogle Scholar
Majumdar, S., Bharadwaj, S., & Choudhury, T. R.. MNRAS, 426: 31783194, November 2012.CrossRefGoogle Scholar
Mellema, G., Koopmans, L., Shukla, H., Datta, K. K., Mesinger, A., & Majumdar, S.. Advancing Astrophysics with the Square Kilometre Array (AASKA14), art. 10, 2015.Google Scholar
Shimabukuro, H. & Semelin, B.. MNRAS, 468: 38693877, July 2017.Google Scholar