Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T20:28:37.945Z Has data issue: false hasContentIssue false

Progress of Radar Observations of Meteors in Kazan (Russia) over the Last Sixty Years

Published online by Cambridge University Press:  01 April 2019

Sergei A. Kalabanov
Affiliation:
Kazan Federal University, Russia, Kazan, 16A Kremlyovskaya Str., office 1404 email: kazansergei@mail.ru
Arkadiy V. Karpov
Affiliation:
Kazan Federal University, Russia, Kazan, 16A Kremlyovskaya Str., office 1404 email: kazansergei@mail.ru
Amir I. Sulimov
Affiliation:
Kazan Federal University, Russia, Kazan, 16A Kremlyovskaya Str., office 1404 email: kazansergei@mail.ru
Oleg N. Sherstyukov
Affiliation:
Kazan Federal University, Russia, Kazan, 16A Kremlyovskaya Str., office 1404 email: kazansergei@mail.ru
Rashid A. Ishmuratov
Affiliation:
Kazan State Power Engineering University, Russia, Kazan email: rash-i@mail.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a brief survey on the history of radar observations of meteors in Kazan from 1950s to present days. Such achievements of Kazan researchers as development and further improvement of original measuring equipment and antenna systems, of observational data processing methods, their contribution to the theory of physics of meteor phenomena and theoretical interpretation of experimental data are highlighted. A particular progress in meteor astronomy has been achieved with a new discrete quasi-tomoghraphic method for faint meteor showers identification that uses goniometer data of meteor radio reflections detected on radar as input data. The current state and new horizons of meteor studies in Kazan are stated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2019 

References

Andreev, V. V., Belkovich, O. I. & Tokhtas’ev, V. S. 1976, The heliocentric distribution of the meteor bodies at the vicinity of the earth’s orbit, Interplanetary Dust and Zodiacal Light, 48, 383384, doi.org/10.1007/3-540-07615-8_511Google Scholar
Belkovich, O. I., Sidorov, V. V. & Filimonova, T. K. 1991, Calculation of meteor radiant distribution by using one meteor radar with goniometer, Astr. Vestn.– M., 25, No 2, pp. 225232Google Scholar
Belkovich, O. I., Filimonova, T. K. & Sidorov, V. V. 1995, Structure of sporadic meteor radiant distributions from radar observations, Earth, Moon, and Planets, 68, 1–3, 199205, doi.org/10.1007/BF00671509Google Scholar
Belkovich, O. I., Sidorov, V. V., Filimonova, T. K. & Nugmanov, I. S. 1997, Tomographic method for meteor-flux determination from radar observations, Solar System Research, 31 (6), 477482Google Scholar
Desourdis, R. I. 1993, Modeling and analysis of meteor burst communications, in: Meteor burst communications: Theory and Practice, New York. 342 p.Google Scholar
Fahrutdinova, A. N., Ganin, V. A., Ishmuratov, R. A., Berdunov, N. V. & Hutorova, O. G. 1997, Long-period variations of the zonal and meridional circulation in the mid-latitude upper mesosphere– lower thermosphere, Advances in Space Research, 20, No 6, pp. 11611164, doi.org/10.1016/S0273-1177(97)00765-5Google Scholar
Genesis Software - innovative radars designed. Official site www.gsoft.com.au/productsandservices/skiymetGoogle Scholar
GOST 25645.112-84. 1984, Meteoric matter. Terms, definitions and symbols. State standard, (in Russian)Google Scholar
Hawkins, G. S. 1956, A radio-echo survey of sporadic meteor radiant, Mon. Not. Roy. Astr. Soc., 116, 92104CrossRefGoogle Scholar
Herlofson, N. 1948, The theory of meteor ionization, Repts. Prog. Phys., 11, 444454Google Scholar
Hey, J. S. & Stewart, J. S. 1947, Radar observation of meteors, Proc. Phys. Soc., 59, 858883CrossRefGoogle Scholar
Jacobi, Ch., Portnyagin, Yu. I., Solovjova, T. V., Hoffmann, P., Singer, W., Fakhrutdinova, A. N., Ishmuratov, R. A., Beard, A. G., Mitchell, N. J., Miller, H. G., Schminder, R., Kurschner, D., Manson, A. N. & Meek, C. E. 1999, Climatology of the semidiurnal tide of 52 N – 56 N from ground-based radar wind measurements 1985-1995, Journal of Atmospheric and Solar-Terrestrial Physics, 61, No 13, 975991Google Scholar
Kalabanov, S., Sherstyukov, O., Karpov, A. & Ishmuratov, R. 2018, Orbital structure of a meteoric complex in a vicinity of the Earth’s orbit by Kazan meteor radar. Types of meteor orbits, Planetary and Space Science, 161, 8491, doi.org/10.1016/j.pss.2018.06.015Google Scholar
Karpov, A. V. 1995, Computer model of a meteor radio channel, Radiophysics and Quantum Electronics, 38, 11, 767773, https://link.springer.com/article/10.1007%2FBF01047076CrossRefGoogle Scholar
Karpov, A. V. 2001, Thin Space Structure of Meteor Flux Irregularities in Large Meteor Showers in 1986–1999, Proceedings of the Meteoroids 2001 Conference 6–10 August 2001 Swedish Institute of Space Physics Kiruna, Sweden, 27–32, www.gbv.de/dms/tib-ub-hannover/345306236.pdfGoogle Scholar
Karpov, A. V., Naumov, A. V. 2002, Study of the Influence of the Mutual Orientation of Antennas on the Characteristics of a Meteor Radio Channel // Radiophysics and Quantum Electronics, vol. 45, iss. 8, pp. 623–628, https://link.springer.com/content/pdf/10.1023/A:1021729031139.pdfCrossRefGoogle Scholar
Kostylev, K. V. 1958, Radio equipment of the Engelgardt’s Astronomical Observatory for automatic observation of meteors, Astronomy Reports, 4, 643, (in Russian)Google Scholar
Kostylev, K. V., Pupyshev, Yu.A. & Sidorov, V. V. 1960, Special equipment of the Engelgardt’s Astronomical Observatory for radar observation of meteors, Bulletin of the Engelgardt’s Astronomical Observatory, 35, 118, (in Russian)Google Scholar
Lovell, A. C. B., Banwell, C. J. & Clegg, J. A. 1947, Radio echo observations of the Giacobinid meteors, Mon. Not. Roy. Astr. Soc., 107, 164175CrossRefGoogle Scholar
Makarov, V. A., Nesterov, V. Yu., Pupyshev, Yu. A. et al. 1981, The “KGU-M5” radar complex for measurement of angular coordinates of reflection areas of ionized meteor trails, Meteor radio propagation, 17, 96100, (in Russian)Google Scholar
McKinley, D. V. R. & Millman, P. M. 1948, A phenomenological theory of radar echoes from meteors, Proc. Inst. Radio Eng., 37, 364375Google Scholar
Pupyshev, Yu. A. 1964, Determination of celestial distribution of visible radiants of sporadic meteors based on azimuth-scanning radar observations, Meteor radio propagation, 2, 82110, (in Russian)Google Scholar
Pupyshev, Yu. A., Filimonova, T. K. & Kazakova, T. V. 1980, Celestial maps of density distribution of visible radiants of sporadic meteors, Meteor radio propagation, 15, 2141, (in Russian)Google Scholar
Sidorov, V. V. & Kalabanov, S. A. 2003, A Method for Determining the Coordinates of Meteor Shower Radiants from Meteor Radar Goniometric Data, Solar System Research, 37 (2), 145155, dx.doi.org/10.1023/A:1023340610188Google Scholar
Sidorov, V. V., Kalabanov, S., Sidorova, S., Filin, I. & Filimonova, T. 2004, Associations of meteor microshowers or as the Kazan radar “SEES” radiants on northern celestial hemisphere, Moon and Planets, 95, Issue 1–4, 165179, link.springer.com/chapter/10.1007/1-4020-5075-5_18Google Scholar
Sidorov, V. V., Kalabanov, S. A., Lyubimov, D. V., Nasyrov, A. F., Sidorova, A. D. & Filin, I. V. 2008, Orbital structure of the meteor complex according to radar observations in Kazan. 1. Apparent distributions of aphelia, Solar System Research, 42 (3), 194208, http://pleiades.online/cgi-perl/search.pl?type=abstract&name=solsys&number=3&year=8&page=194Google Scholar