Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T00:19:50.877Z Has data issue: false hasContentIssue false

Progenitors of binary black hole mergers detected by LIGO

Published online by Cambridge University Press:  28 July 2017

Konstantin Postnov
Affiliation:
Sternberg Astronomical Institute, Moscow M.V.Lomonosov State University 13, Universitetskij pr., 119234 Moscow, Russia email: pk@sai.msu.ru
Alexander Kuranov
Affiliation:
Sternberg Astronomical Institute, Moscow M.V.Lomonosov State University 13, Universitetskij pr., 119234 Moscow, Russia email: pk@sai.msu.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Possible formation mechanisms of massive close binary black holes that can merge in the Hubble time to produce powerful gravitational wave bursts detected during advanced LIGO O1 science run are briefly discussed. The pathways include the evolution from field low-metallicity massive binaries, the dynamical formation in globular clusters and primordial black holes. Low effective black hole spins inferred for LIGO GW150914 and LTV151012 events are discussed. Population synthesis calculations of the expected spin and chirp mass distributions from the standard field massive binary formation channel are presented for different metallicities (from zero-metal Population III stars up to solar metal abundance). We conclude that that merging binary black holes can contain systems from different formation channels, discrimination between which can be made with increasing statistics of mass and spin measurements from ongoing and future gravitational wave observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abadie, J., et al. 2010, Classical and Quantum Gravity, 27, 173001 CrossRefGoogle Scholar
Abbott, B.P. et al. 2016a, ApJL, 818, L22 Google Scholar
Abbott, B.P. et al. 2016b, Physical Review X, 6, 041015 Google Scholar
Abbott, B.P. et al. 2016c, Physical Review Letters, 116, 241103 CrossRefGoogle Scholar
Abbott, B.P. et al. 2016d, Physical Review Letters, 116, 061102 Google Scholar
Abbott, B.P. et al. 2016e, ApJL, 833, L1 Google Scholar
Belczynski, K., Holz, D. E., Bulik, T., & O'Shaughnessy, R., 2016, Nature, 534, 512 Google Scholar
Belczynski, K., Kalogera, V., & Bulik, T., 2002, ApJ, 572, 407 Google Scholar
Bird, S., et al. 2016, Physical Review Letters, 116, 201301 Google Scholar
Blinnikov, S., Dolgov, A., Porayko, N. K., & Postnov, K., 2016, JCAP, 11, 036 Google Scholar
Carr, B., Kühnel, F., & Sandstad, M., 2016, Phys. Rev. D, 94, 083504 CrossRefGoogle Scholar
Davydov, V. V., Esipov, V. F., & Cherepashchuk, A. M., 2008, Astronomy Reports, 52, 487 Google Scholar
de Mink, S. E. & Mandel, I., 2016, MNRAS, 460, 3545 Google Scholar
Dolgov, A. & Silk, J., 1993, Phys. Rev. D, 47, 4244 Google Scholar
Dolgov, A. D., Kawasaki, M., & Kevlishvili, N., 2009, Nuclear Physics B, 807, 229 CrossRefGoogle Scholar
Dominik, M., et al. 2012, ApJ, 759, 52 Google Scholar
Dominik, M., et al. 2013, ApJ, 779, 72 Google Scholar
Eldridge, J. J. & Stanway, E. R., 2016, MNRAS, 462, 3302 Google Scholar
Eroshenko, Y. N. 2016, ArXiv e-prints Google Scholar
Flannery, B. P. & van den Heuvel, E. P. J., 1975, A&A, 39, 61 Google Scholar
Fuller, J., Cantiello, M., Lecoanet, D., & Quataert, E., 2015, ApJ, 810, 101 CrossRefGoogle Scholar
Hartwig, T., et al. 2016, MNRAS, 460, L74 Google Scholar
Hotokezaka, K. & Piran, T. 2017, ArXiv e-prints Google Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R., 2002, MNRAS, 329, 897 Google Scholar
Kinugawa, T., Inayoshi, K., Hotokezaka, K., Nakauchi, D., & Nakamura, T., 2014, MNRAS, 442, 2963 Google Scholar
Kushnir, D., Zaldarriaga, M., Kollmeier, J. A., & Waldman, R., 2016, MNRAS, 462, 844 Google Scholar
Lipunov, V.M., Postnov, K.A., & Prokhorov, M.E. 1997a, Astronomy Letters, 23, 492 Google Scholar
Lipunov, V.M., Postnov, K.A., & Prokhorov, M.E. 1997b, New Astron., 2, 43 Google Scholar
Lipunov, V.M., Postnov, K.A., & Prokhorov, M.E. 1997c, MNRAS, 288, 245 Google Scholar
Lipunov, V. M., et al. 2017, New Astron., 51, 122 Google Scholar
Mandel, I. & de Mink, S. E., 2016, MNRAS, 458, 2634 Google Scholar
Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M., & Moriya, T. J., 2016, A&A, 588, A50 Google Scholar
Nakamura, T., Sasaki, M., Tanaka, T., & Thorne, K. S., 1997, ApJL, 487, L139 Google Scholar
Ohlmann, S. T., Röpke, F. K., Pakmor, R., & Springel, V., 2016, ApJL, 816, L9 Google Scholar
Pavlovskii, K., Ivanova, N., Belczynski, K., & Van, K. X., 2017, MNRAS, 465, 2092 Google Scholar
Postnov, K. A., Kuranov, A. G., Kolesnikov, D. A., Popov, S. B., & Porayko, N. K., 2016, MNRAS, 463, 1642 Google Scholar
Postnov, K. A. & Yungelson, L. R., 2014, Living Reviews in Relativity, 17, 3 Google Scholar
Rodriguez, C.L., Chatterjee, S., & Rasio, F.A. 2016a, Phys. Rev. D, 93, 084029 Google Scholar
Rodriguez, C.L., Haster, C.J., Chatterjee, S., Kalogera, V., & Rasio, F.A. 2016b, ApJL, 824, L8 CrossRefGoogle Scholar
Sasaki, M., Suyama, T., Tanaka, T., & Yokoyama, S., 2016, Physical Review Letters, 117, 061101 Google Scholar
Sigurdsson, S. & Hernquist, L., 1993, Nature, 364, 423 Google Scholar
Spera, M., Mapelli, M., & Bressan, A., 2015, MNRAS, 451, 4086 Google Scholar
The LIGO Scientific Collaboration et al. 2016, ArXiv e-prints Google Scholar
Tutukov, A. & Yungelson, L., 1973, Nauchnye Informatsii, 27, 70 Google Scholar
Tutukov, A., Yungelson, L., & Klayman, A., 1973, Nauchnye Informatsii, 27, 3 Google Scholar
Tutukov, A. V. & Yungelson, L. R., 1993, MNRAS, 260, 675 Google Scholar
van den Heuvel, E. P. J. & Heise, J., 1972, Nature Physical Science, 239, 67 Google Scholar
van den Heuvel, E. P. J., Portegies Zwart, S. F., & de Mink, S. E. 2017, ArXiv e-prints Google Scholar
Woosley, S. E., Heger, A., & Weaver, T. A., 2002, Reviews of Modern Physics, 74, 1015 Google Scholar