Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T21:08:37.775Z Has data issue: false hasContentIssue false

Powerful Molecular Outflows in Nearby Active Galaxies

Published online by Cambridge University Press:  25 July 2014

Sylvain Veilleux
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742, USA email: veilleux@astro.umd.edu
Marcio Meléndez
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742, USA email: veilleux@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel-PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7-μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than −50 km s−1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~ 145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s−1, is seen in only 4 objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~ −1000 km s−1 are measured in several objects, but median outflow velocities are typically ~ −200 km s−1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large AGN fractions and luminosities [log (LAGN/L) ≥ 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. In contrast, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aalto, S., et al. 2012, A&A, 537, 44Google Scholar
Chevalier, R. A. & Clegg, A. W. 1985, Nature, 317, 44Google Scholar
Cicone, C., et al. 2012, A&A, 543, 99Google Scholar
Cicone, C., et al. 2014, A&A 000 000 (arXiv:1311.2595)Google Scholar
Combes, F., et al. 2013, A&A, 550, 41Google Scholar
De Young, D. & Heckman, T. M. 1994, ApJ, 431, 598Google Scholar
Downes, D. & Solomon, P. M. 1998, ApJ, 507, 615Google Scholar
Feruglio, C., et al. 2010, A&A, 518, L155Google Scholar
Fischer, J., Sturm, E., González-Alfonso, E., et al. 2010, A&A 518 L41 (F10)Google Scholar
González-Alfonso, E., et al. 2012, A&A, 541, 4Google Scholar
González-Alfonso, E., et al. 2014, A&A, 561, 27Google Scholar
Hopkins, P. F., et al. 2009, MNRAS, 398, 303Google Scholar
Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569Google Scholar
Narayanan, D., et al. 2008, ApJS, 176, 331CrossRefGoogle Scholar
Rothberg, & Fischer, 2010, ApJ, 712, 318Google Scholar
Rothberg, B., et al. 2013, ApJ, 767, 72Google Scholar
Rupke, D. S. N. & Veilleux, S. 2011, ApJ 729 L27 (RV11)Google Scholar
Rupke, D. S. N. & Veilleux, S. 2013a, ApJ 768 75 (RV13a)Google Scholar
Rupke, D. S. N. & Veilleux, S. 2013b, ApJ, 775, L15Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005a, ApJS, 160, 87Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005b, ApJS, 160, 115Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005c, ApJ, 632, 751Google Scholar
Spoon, H. & Holt, J. 2009, ApJ, 702, L42Google Scholar
Strel'nitskii, V. S. & Sunyaev, R. A. 1973, Soviet Astronomy, 16, 579Google Scholar
Sturm, E., et al. 2011, ApJ 733 L16 (S11)CrossRefGoogle Scholar
Teng, S. H., Veilleux, S., & Baker, A. J. 2013, ApJ, 765, 95CrossRefGoogle Scholar
Veilleux, S., Kim, D.-C., & Sanders, D. B. 2002, ApJS, 143, 315Google Scholar
Veilleux, S., Kim, D.-C., et al. 2009a, ApJ, 701, 587Google Scholar
Veilleux, S., Rupke, D. S. N., et al. 2009b, ApJS, 182, 628Google Scholar
Veilleux, S., Trippe, M., et al. 2013a, ApJ, 764, 15CrossRefGoogle Scholar
Veilleux, S., Meléndez, M., et al. 2013b, ApJ 776 27 (V13b)Google Scholar
Vestergaard, M. & Peterson, B. M. 2006, ApJ, 641, 689CrossRefGoogle Scholar