Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-29T15:15:28.515Z Has data issue: false hasContentIssue false

Plaskett’s Star: a fundamental revision of the architecture of the system

Published online by Cambridge University Press:  29 August 2024

E. Stacey*
Affiliation:
Royal Military College of Canada, Kingston, Canada
G. A. Wade
Affiliation:
Royal Military College of Canada, Kingston, Canada
J. H. Grunhut
Affiliation:
Telus Digital, Toronto, Canada
C. P. Folsom
Affiliation:
Tartu Observatory, University of Tartu, Tartu, Estonia
O. Kochukhov
Affiliation:
Uppsala University, Uppsala, Sweden

Abstract

A century of study has characterized Plaskett’s Star (HD 47129) as an evolved, massive, short-period, equal mass O+O binary system. The discovery of a magnetic field in the broad-line component by Grunhut et al. (2013) renewed interest in the study of this system and led to its establishment as the most rapidly rotating magnetic O-type star. Grunhut et al. (2021) observed the circular polarization signatures of the magnetic star to exhibit no radial velocity variations while the narrow-line star demonstrates radial velocity variations consistent with the established orbital period. This has raised fundamental questions about the architecture of this system and the nature of the magnetic star which have led to a major shift in our understanding of HD 47129.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Plaskett, J. S. 1922, MNRAS, 82, 447 CrossRefGoogle Scholar
Linder, N.; Rauw, G.; Martins, F.; Sana, H.; De Becker, M. and Gosset, E. 2008, A&A, 489.2, 713CrossRefGoogle Scholar
Grunhut, J. H.; Wade, G. A.; Leutenegger, M.; Petit, V.; Rauw, G. et al. 2013, MNRAS, 428.2, 1686CrossRefGoogle Scholar
Grunhut, J. H.; Wade, G. A.; Folsom, C. P.; Neiner, C.; Kochukhov, O. et al. 2022, MNRAS, 512.2, 1944CrossRefGoogle Scholar
Blomme, R.; Mahy, L.; Catala, C.; Cuypers, J., Gosset, E. et al. 2011, A&A, 533, A4 Google Scholar
Bowman, D. M.; Burssens, S.; Simón-Díaz, S.; Edelmann, P. V. F. et al. 2020, A&A, 640, A36 Google Scholar
Brocksopp, C.; Fender, R. P.; Larionov, V.; Lyuty, V.M.; Tarasov, A.E. et al. 1999, MNRAS, 309.4, 1063CrossRefGoogle Scholar
Casares, J.; Negueruela, I.; Ribó, M.; Ribas, I.; PAredes, J. M. et al. 2014, Nature, 505.7483, 378CrossRefGoogle Scholar
Linder, N.; Rauw, G.; Pollock, A.M.T. and Stevens, I.R. 2006, MNRAS, 370.4, 1623CrossRefGoogle Scholar
Sana, H.; Le Bouquin, J.-B.; Lacour, S.; Berger, J.-P.; Duvert, G. et al. 2014, ApJS, 215.1, 35CrossRefGoogle Scholar
Götberg, Y.; de Mink, S. E.; Groh, J.H; Kupfer, T.; Crowther, P. A. et al. 2018, A&A, 615, A78 Google Scholar
Supplementary material: PDF

Stacey et al. supplementary material

Stacey et al. supplementary material

Download Stacey et al. supplementary material(PDF)
PDF 1 MB