Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T21:13:24.419Z Has data issue: false hasContentIssue false

Period Ratio Distribution of Near-Resonant Planets Indicates Planetesimal Scattering

Published online by Cambridge University Press:  27 October 2016

Sourav Chatterjee
Affiliation:
Center for Interdisciplinary Exploration and Research in AstrophysicsNorthwestern University2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Seth O. Krantzler
Affiliation:
Center for Interdisciplinary Exploration and Research in AstrophysicsNorthwestern University2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Eric B. Ford
Affiliation:
Department of Astronomy & AstrophysicsThe Pennsylvania State University525 Davey Laboratory, University Park, PA 16802, USA Center for Exoplanets and Habitable WorldsThe Pennsylvania State University525 Davey Laboratory, University Park, PA, 16802, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An intriguing trend among it Kepler's multi-planet systems is an overabundance of planet pairs with period ratios just wide of mean motion resonances (MMR) and a dearth of systems just narrow of them. In a recently published paper Chatterjee & Ford (2015; henceforth CF15) has proposed that gas-disk migration traps planets in a MMR. After gas dispersal, orbits of these trapped planets are altered through interaction with a residual planetesimal disk. They found that for massive enough disks planet-planetesimal disk interactions can break resonances and naturally create moderate to large positive offsets from the initial period ratio for large ranges of planetesimal disk and planet properties. Divergence from resonance only happens if the mass of planetesimals that interact with the planets is at least a few percent of the total planet mass. This threshold, above which resonances are broken and the offset from resonances can grow, naturally explains why the asymmetric large offsets were not seen in more massive planet pairs found via past radial velocity surveys. In this article we will highlight some of the key findings of CF15. In addition, we report preliminary results from an extension of this study, that investigates the effects of planet-planetesimal disk interactions on initially non-resonant planet pairs. We find that planetesimal scattering typically increases period ratios of non-resonant planets. If the initial period ratios are below and in proximity of a resonance, under certain conditions, this increment in period ratios can create a deficit of systems with period ratios just below the exact integer corresponding to the MMR and an excess just above. From an initially uniform distribution of period ratios just below a 2:1 MMR, planetesimal interactions can create an asymmetric distribution across this MMR similar to what is observed for the kepler planet pairs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Armitage, P. J. 2013 Astrophysics of Planet Formation, Cambridge University Press Google Scholar
Butler, R. P., Wright, J. T., Marcy, G. W. et al. 2006 ApJ, 646, 505 Google Scholar
Batygin, K. & Morbidelli, A. 2013 AJ, 145, 1 CrossRefGoogle Scholar
Chambers, J. E. 1999 MNRAS, 304, 793 CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008 ApJ, 686, 580 CrossRefGoogle Scholar
Chatterjee, S. & Eric, B. Ford 2015, ApJ, 803, 33 CrossRefGoogle Scholar
Deck, K. M. & Batygin, K. 2015 ApJ, 810, 119 Google Scholar
Delisle, J. B. & Laskar, J. 2014 A&A, 570, 7 Google Scholar
Fabrycky, D. C., Lissauer, J. J., Ragozzine, D. et al. 2014, ApJ, 790, 146 Google Scholar
Fernandez, J. A. & Ip, W. H. 1984 Icarus, 58, 109 CrossRefGoogle Scholar
Ford, E. B. & Rasio, F. A. 1996 Science, 274, 954 Google Scholar
Goldreich, P. & Schlihting, H. E. 2014 ApJ, 147, 32 Google Scholar
Gomes, R. S., Morbidelli, A., & Levison, H. F. 2004 Icarus, 170, 492 Google Scholar
Hadden, S. & Lithwick, Y. 2014 ApJ, 787, 80 Google Scholar
Hands, T. O., Alexander, R. D., & Dehnen, W. 2014 MNRAS, 445, 749 Google Scholar
Ida, S., Bryden, G., Lin, D. N. C., & Tanaka, H. 2000 ApJ, 534, 428 Google Scholar
Kirsh, D. R., Duncan, M., Brasser, R., & Levison, H. F. 2009 Icarus, 199, 197 Google Scholar
Lee, M. H. & Peale, S. J. 2002 ApJ, 567, 596 Google Scholar
Lee, M. H., Fabrycky, D., & Lin, D. N. C. 2013 ApJ, 774, 52 Google Scholar
Lissauer, J. J., Ragozzine, D., Fabrycky, D. C. et al. 2011, ApJS, 197, 8 Google Scholar
Lithwick, Y. & Wu, Y. 2012 ApJL, 756, 11 Google Scholar
Matsumura, S., Thommes, E. W., Chatterjee, S., & Rasio, F. A. 2010 ApJ, 714, 194 Google Scholar
Moore, A., Hasan, I., & Quillen, A. C. 2013 MNRAS, 432, 1196 Google Scholar
Petrovich, C., Malhotra, R., & Tremaine, S. 2013 ApJ, 770, 24 Google Scholar
Rein, H. 2012 MNRAS, 427, 21 Google Scholar
Silburt, A., & Rein, H. 2015 MNRAS, 453, 4089 CrossRefGoogle Scholar
Steffen, J. H., & Hwang, J. A. 2015 MNRAS, 448, 1956 Google Scholar
Veras, D. & Ford, E. B. 2012 MNRAS, 420, 23 Google Scholar