Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T08:06:18.278Z Has data issue: false hasContentIssue false

The origin of planetary winds

Published online by Cambridge University Press:  16 August 2023

Daria Kubyshkina*
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

Abstract

Atmospheric escape is a fundamental phenomenon shaping the structure and evolution of planetary atmospheres. Physics of planetary winds range from global processes such as tidal interactions with the host star, through large-scale hydrodynamic outflow, to essentially microphysical kinetic effects, including Jeans-like escape and the interaction of planetary atmospheres with stellar winds and the own magnetic fields of planets. Each of these processes is expected to be most relevant for planets of different properties and at different stages in planetary and stellar evolution. Thus, it is expected that the hydrodynamic outflow guides the evolution of hydrogen-dominated atmospheres of planets having low masses (below that of Neptune) and/or close-in orbits, while the kinetic effects are most important for the long-term evolution of planets with secondary atmospheres, similar to the inner planets in the Solar System. Finally, each of these processes is affected by the interaction with stellar winds.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, A. & Vidotto, A. A. 2019, MNRAS, 490, 3760. doi: 10.1093/mnras/stz2842 CrossRefGoogle Scholar
Arakcheev, A. S., Zhilkin, A. G., Kaigorodov, P. V., et al. 2017, Astronomy Reports, 61, 932. doi: 10.1134/S1063772917110014 CrossRefGoogle Scholar
Arras, P. & Socrates, A. 2010, ApJ, 714, 1. doi: 10.1088/0004-637X/714/1/1 CrossRefGoogle Scholar
Batygin, K. & Stevenson, D. J. 2010, ApJ Letters, 714, L238. doi: 10.1088/2041-8205/714/2/L238 CrossRefGoogle Scholar
Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466. doi: 10.1086/318667 CrossRefGoogle Scholar
Caldiroli, A., Haardt, F., Gallo, E., et al. 2021, A&A, 655, A30. doi: 10.1051/0004-6361/202141497 CrossRefGoogle Scholar
Caldiroli, A., Haardt, F., Gallo, E., et al. 2022, A&A, 663, A122. doi: 10.1051/0004-6361/202142763 CrossRefGoogle Scholar
Carolan, S., Vidotto, A. A., Hazra, G., et al. 2021, MNRAS, 508, 6001. doi: 10.1093/mnras/stab2947 CrossRefGoogle Scholar
Carolan, S., Vidotto, A. A., Plavchan, P., et al. 2020, MNRAS, 498, L53. doi: 10.1093/mnrasl/slaa127 CrossRefGoogle Scholar
Cecchi-Pestellini, C., Ciaravella, A., Micela, G., et al. 2009, A&A, 496, 863. doi: 10.1051/0004-6361/200809955 CrossRefGoogle Scholar
Chamberlain, J. W. 1963, Planetary and Space Science, 11, 901. doi: 10.1016/0032-0633(63)90122-3 CrossRefGoogle Scholar
Chamberlain, J. W. 1969, ApJ, 155, 711. doi: 10.1086/149905 CrossRefGoogle Scholar
Chen, H. & Rogers, L. A. 2016, ApJ, 831, 180. doi: 10.3847/0004-637X/831/2/180 CrossRefGoogle Scholar
Christie, D., Arras, P., & Li, Z.-Y. 2016, ApJ, 820, 3. doi: 10.3847/0004-637X/820/1/3 CrossRefGoogle Scholar
Cohen, O., Alvarado-Gómez, J. D., Drake, J. J., et al. 2022, ApJ, 934, 189. doi: 10.3847/1538-4357/ac78e4 CrossRefGoogle Scholar
Cubillos, P., Erkaev, N. V., Juvan, I., et al. 2017, MNRAS, 466, 1868. doi: 10.1093/mnras/stw3103 CrossRefGoogle Scholar
Curry, S. M., Tatum, P., Mitchell, D., et al. 2022, MNRAS, 517, L121. doi: 10.1093/mnrasl/slac099 CrossRefGoogle Scholar
Dalgarno, A., Yan, M., & Liu, W. 1999, ApJS, 125, 237. doi: 10.1086/313267 CrossRefGoogle Scholar
Dayhoff, M. O., Eck, R. V., Lippincott, E. R., et al. 1967, Science, 155, 556. doi: 10.1126/science.155.3762.556 CrossRefGoogle Scholar
Egan, H., Jarvinen, R., Ma, Y., et al. 2019, MNRAS, 488, 2108. doi: 10.1093/mnras/stz1819 CrossRefGoogle Scholar
Erkaev, N. V., Kulikov, Y. N., Lammer, H., et al. 2007, A&A, 472, 329. doi: 10.1051/0004-6361:20066929 CrossRefGoogle Scholar
Erkaev, N. V., Lammer, H., Odert, P., et al. 2015, MNRAS, 448, 1916. doi: 10.1093/mnras/stv130 CrossRefGoogle Scholar
Erkaev, N. V., Lammer, H., Odert, P., et al. 2016, MNRAS, 460, 1300. doi: 10.1093/mnras/stw935 CrossRefGoogle Scholar
Erkaev, N., Scherf, M., Herbort, O., et al. 2022, arXiv:2209.14691 (accepted for publication in MNRAS)Google Scholar
Fortney, J. J., Dawson, R. I., & Komacek, T. D. 2021, Journal of Geophysical Research (Planets), 126, e06629. doi: 10.1029/2020JE006629 Google Scholar
Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109. doi: 10.3847/1538-3881/aa80eb CrossRefGoogle Scholar
Fulton, B. J. & Petigura, E. A. 2018, AJ, 156, 264. doi: 10.3847/1538-3881/aae828 CrossRefGoogle Scholar
Ginzburg, S., Schlichting, H. E., & Sari, R. 2016, ApJ, 825, 29. doi: 10.3847/0004-637X/825/1/29 CrossRefGoogle Scholar
Ginzburg, S. & Sari, R. 2016, ApJ, 819, 116. doi: 10.3847/0004-637X/819/2/116 CrossRefGoogle Scholar
Ginzburg, S., Schlichting, H. E., & Sari, R. 2018, MNRAS, 476, 759. doi: 10.1093/mnras/sty290 CrossRefGoogle Scholar
Gronoff, G., Arras, P., Baraka, S., et al. 2020, Journal of Geophysical Research (Space Physics), 125, e27639. doi: 10.1029/2019JA027639 Google Scholar
Gross, S. H. 1972, Journal of Atmospheric Sciences, 29, 214. doi:10.1175/1520-0469(1972)029<0214:OTETOH>2.0.CO;22.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Gunell, H., Maggiolo, R., Nilsson, H., et al. 2018, A&A, 614, L3. doi: 10.1051/0004-6361/201832934 CrossRefGoogle Scholar
Gupta, A. & Schlichting, H. E. 2019, MNRAS, 487, 24. doi: 10.1093/mnras/stz1230 CrossRefGoogle Scholar
Hazra, G., Vidotto, A. A., Carolan, S., et al. 2022, MNRAS, 509, 5858. doi: 10.1093/mnras/stab3271 CrossRefGoogle Scholar
Hunten, D. M. 1973, Journal of Atmospheric Sciences, 30, 1481. doi:10.1175/1520-0469(1973)030<1481:TEOLGF>2.0.CO;22.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Hunten, D. M. 1982, Planetary and Space Science, 30, 773. doi: 10.1016/0032-0633(82)90110-6 CrossRefGoogle Scholar
Hunten, D. M., Pepin, R. O., & Walker, J. C. G. 1987, Icarus, 69, 532. doi: 10.1016/0019-1035(87)90022-4 CrossRefGoogle Scholar
ohnson, R. E. 1994, SSR, 69, 215. doi: 10.1007/BF02101697 CrossRefGoogle Scholar
Johnson, R. E., Combi, M. R., Fox, J. L., et al. 2008, SSR, 139, 355. doi: 10.1007/s11214-008-9415-3 CrossRefGoogle Scholar
Khodachenko, M. L., Shaikhislamov, I. F., Lammer, H., et al. 2015, ApJ, 813, 50. doi: 10.1088/0004-637X/813/1/50 CrossRefGoogle Scholar
Khodachenko, M. L., Shaikhislamov, I. F., Lammer, H., et al. 2021, MNRAS, 507, 3626. doi: 10.1093/mnras/stab2366 CrossRefGoogle Scholar
King, G. W. & Wheatley, P. J. 2021, MNRAS, 501, L28. doi: 10.1093/mnrasl/slaa186 CrossRefGoogle Scholar
Kislyakova, K. G., Lammer, H., Holmström, M., et al. 2013, Astrobiology, 13, 1030. doi: 10.1089/ast.2012.0958 CrossRefGoogle Scholar
Kislyakova, K. G., Fossati, L., Johnstone, C. P., et al. 2018, ApJ, 858, 105. doi: 10.3847/1538-4357/aabae4 CrossRefGoogle Scholar
Koskinen, T. T., Lavvas, P., Huang, C., et al. 2022, ApJ, 929, 52. doi: 10.3847/1538-4357/ac4f45 CrossRefGoogle Scholar
Kubyshkina, D., Fossati, L., Erkaev, N. V., et al. 2018, A&A, 619, A151. doi: 10.1051/0004-6361/201833737 CrossRefGoogle Scholar
Kubyshkina, D., Cubillos, P. E., Fossati, L., et al. 2019, ApJ, 879, 26. doi: 10.3847/1538-4357/ab1e42 CrossRefGoogle Scholar
Kubyshkina, D., Vidotto, A. A., Fossati, L., et al. 2020, MNRAS, 499, 77. doi: 10.1093/mnras/staa2815 CrossRefGoogle Scholar
Kubyshkina, D. I. & Fossati, L. 2021, Research Notes of the American Astronomical Society, 5, 74. doi: 10.3847/2515-5172/abf498 Google Scholar
Kubyshkina, D., Vidotto, A. A., Villarreal D’Angelo, C., et al. 2022, MNRAS, 510, 2111. doi: 10.1093/mnras/stab3594 CrossRefGoogle Scholar
Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., et al. 2007, SSR, 129, 207. doi: 10.1007/s11214-007-9192-4 CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., et al. 2003, ApJ Letters, 598, L121. doi: 10.1086/380815 CrossRefGoogle Scholar
Lammer, H., Kasting, J. F., Chassefière, E., et al. 2008, SSR, 139, 399. doi: 10.1007/s11214-008-9413-5 CrossRefGoogle Scholar
Lammer, H., Leitzinger, M., Scherf, M., et al. 2020, Icarus, 339, 113551. doi: 10.1016/j.icarus.2019.113551 CrossRefGoogle Scholar
Lammer, H., Scherf, M., Kurokawa, H., et al. 2020, SSR, 216, 74. doi: 10.1007/s11214-020-00701-x CrossRefGoogle Scholar
Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C., et al. 2004, A&A, 418, L1. doi: 10.1051/0004-6361:20040106 CrossRefGoogle Scholar
Lee, Y., Combi, M. R., Tenishev, V., et al. 2015, GRL, 42, 9015. doi: 10.1002/2015GL065291 CrossRefGoogle Scholar
Li, S., Lu, H., Cao, J., et al. 2022, ApJ, 931, 30. doi: 10.3847/1538-4357/ac6510 CrossRefGoogle Scholar
Lopez, E. D., Fortney, J. J., & Miller, N. 2012, ApJ, 761, 59. doi: 10.1088/0004-637X/761/1/59 CrossRefGoogle Scholar
Matsakos, T., Uribe, A., & Königl, A. 2015, A&A, 578, A6. doi: 10.1051/0004-6361/201425593 CrossRefGoogle Scholar
Mihalas, D. & Mihalas, B. W. 1984, New York, Oxford University Press, 1984, 731 p.Google Scholar
Mordasini, C. 2020, A&A, 638, A52. doi: 10.1051/0004-6361/201935541 CrossRefGoogle Scholar
Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, ApJ, 693, 23. doi: 10.1088/0004-637X/693/1/23 CrossRefGoogle Scholar
Odert, P., Lammer, H., Erkaev, N. V., et al. 2018, Icarus, 307, 327. doi: 10.1016/j.icarus.2017.10.031 CrossRefGoogle Scholar
Owen, J. E. & Jackson, A. P. 2012, MNRAS, 425, 2931. doi: 10.1111/j.1365-2966.2012.21481.x CrossRefGoogle Scholar
Owen, J. E. & Adams, F. C. 2014, MNRAS, 444, 3761. doi: 10.1093/mnras/stu1684 CrossRefGoogle Scholar
Owen, J. E. & Wu, Y. 2017, ApJ, 847, 29. doi: 10.3847/1538-4357/aa890a CrossRefGoogle Scholar
Öpik, E. J. 1963, Geophysical Journal, 7, 490. doi: 10.1111/j.1365-246X.1963.tb07091.x Google Scholar
Pepin, R. O. 1991, Icarus, 92, 2. doi: 10.1016/0019-1035(91)90036-S CrossRefGoogle Scholar
Ramstad, R. & Barabash, S. 2021, SSR, 217, 36. doi: 10.1007/s11214-021-00791-1 CrossRefGoogle Scholar
Sakai, S., Seki, K., Terada, N., et al. 2018, GRL, 45, 9336. doi: 10.1029/2018GL079972 CrossRefGoogle Scholar
Salz, M., Schneider, P. C., Czesla, S., et al. 2015, A&A, 576, A42. doi: 10.1051/0004-6361/201425243 CrossRefGoogle Scholar
Salz, M., Schneider, P. C., Czesla, S., et al. 2016, A&A, 585, L2. doi: 10.1051/0004-6361/201527042 CrossRefGoogle Scholar
Salz, M., Czesla, S., Schneider, P. C., et al. 2016, A&A, 586, A75. doi: 10.1051/0004-6361/201526109 CrossRefGoogle Scholar
Sekiya, M., Nakazawa, K., & Hayashi, C. 1980, Progress of Theoretical Physics, 64, 1968. doi: 10.1143/PTP.64.1968 CrossRefGoogle Scholar
Shematovich, V. I., Bisikalo, D. V., & Gerard, J. C. 1994, JGR, 99, 23217. doi: 10.1029/94JA01769 CrossRefGoogle Scholar
Shematovich, V. I., Ionov, D. E., & Lammer, H. 2014, A&A, 571, A94. doi: 10.1051/0004-6361/201423573 CrossRefGoogle Scholar
Shizgal, B. & Lindenfeld, M. J. 1982, JGR, 87, 853. doi: 10.1029/JA087iA02p00853 CrossRefGoogle Scholar
Shizgal, B. & Blackmore, R. 1986, Planetary and Space Science, 34, 279. doi: 10.1016/0032-0633(86)90133-9 CrossRefGoogle Scholar
Shizgal, B. D. & Arkos, G. G. 1996, Reviews of Geophysics, 34, 483. doi: 10.1029/96RG02213 CrossRefGoogle Scholar
Trammell, G. B., Li, Z.-Y., & Arras, P. 2014, ApJ, 788, 161. doi: 10.1088/0004-637X/788/2/161 CrossRefGoogle Scholar
Vidal-Madjar, A. 1978, GRL, 5, 29. doi: 10.1029/GL005i001p00029 CrossRefGoogle Scholar
Vidotto, A. A., Fares, R., Jardine, M., et al. 2015, MNRAS, 449, 4117. doi: 10.1093/mnras/stv618 CrossRefGoogle Scholar
Vidotto, A. A. & Cleary, A. 2020, MNRAS, 494, 2417. doi: 10.1093/mnras/staa852 CrossRefGoogle Scholar
Vidotto, A. A. 2021, Living Reviews in Solar Physics, 18, 3. doi: 10.1007/s41116-021-00029-w CrossRefGoogle Scholar
Villarreal D’Angelo, C., Esquivel, A., Schneiter, M., et al. 2018, MNRAS, 479, 3115. doi: 10.1093/mnras/sty1544 CrossRefGoogle Scholar
Volkov, A. N., Johnson, R. E., Tucker, O. J., et al. 2011, ApJ Letters, 729, L24. doi: 10.1088/2041-8205/729/2/L24 CrossRefGoogle Scholar
Watson, A. J., Donahue, T. M., & Walker, J. C. G. 1981, Icarus, 48, 150. doi: 10.1016/0019-1035(81)90101-9 CrossRefGoogle Scholar
Weber, T., Brain, D., Xu, S., et al. 2021, Journal of Geophysical Research (Space Physics), 126, e29234. doi: 10.1029/2021JA029234 Google Scholar
Wu, Y. & Lithwick, Y. 2013, ApJ, 763, 13. doi: 10.1088/0004-637X/763/1/13 CrossRefGoogle Scholar
Yelle, R. V. 2004, Icarus, 170, 167. doi: 10.1016/j.icarus.2004.02.008 CrossRefGoogle Scholar
Zahnle, K. J. & Kasting, J. F. 1986, Icarus, 68, 462. doi: 10.1016/0019-1035(86)90051-5 CrossRefGoogle Scholar
Zhang, H., Fu, S., Fu, S., et al. 2022, ApJ, 937, 4. doi: 10.3847/1538-4357/ac8a93 CrossRefGoogle Scholar