Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-10T23:36:32.923Z Has data issue: false hasContentIssue false

On the origin of N in galaxies with galaxy evolution models

Published online by Cambridge University Press:  30 December 2019

Fiorenzo Vincenzo
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire College Lane, AL10 9AB, Hatfield, United Kingdom emails: f.vincenzo@herts.ac.uk, c.kobayashi@herts.ac.uk
Chiaki Kobayashi
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire College Lane, AL10 9AB, Hatfield, United Kingdom emails: f.vincenzo@herts.ac.uk, c.kobayashi@herts.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nitrogen is among the most abundant chemical elements in the cosmos, and asymptotic giant branch (AGB) stars are fundamental nucleosynthetic sources of N in galaxies. In this work, we show how the observed N/O versus O/H chemical abundance diagram, both in extragalactic systems and in our own Galaxy, can be used to constrain the nucleosynthetic origin of N in the cosmos. In particular, we review the results of our studies with chemical evolution models, embedded in full cosmological chemodynamical simulations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Belfiore, F., Maiolino, R., Tremonti, C., et al. 2017, MNRAS, 469, 151 CrossRefGoogle Scholar
Berg, D. A., Skillman, E. D., Henry, R. B. C., Erb, D. K., & Carigi, L., 2016, ApJ, 827, 126 CrossRefGoogle Scholar
Chiappini, C., Matteucci, F., & Ballero, S. K. 2005, A&A, 437, 429 Google Scholar
Dopita, M. A., Kewley, L. J., Sutherland, R. S., & Nicholls, D. C., 2016, APSS, 361, 61 Google Scholar
Gavilán, M., Mollá, M., & Buell, J. F. 2006, A&A, 450, 509 Google Scholar
Henry, R. B. C., Edmunds, M. G., & Köppen, J. 2000, ApJ, 541, 660 CrossRefGoogle Scholar
Izotov, Y. I., Thuan, T. X., & Guseva, N. G., 2012, A&A, 546, A122 Google Scholar
Iwamoto, K., Brachwitz, F., Nomoto, K., et al. 1999, ApJS, 125, 439 CrossRefGoogle Scholar
James, B. L., Koposov, S., Stark, D. P., et al., 2015, MNRAS, 448, 2687 CrossRefGoogle Scholar
Karakas, A. I. 2010, MNRAS, 403, 1413 CrossRefGoogle Scholar
Kobayashi, C. 2004, MNRAS, 347, 740 CrossRefGoogle Scholar
Kobayashi, C., Springel, V., & White, S. D. M., 2007, MNRAS, 376, 1465 CrossRefGoogle Scholar
Kobayashi, C., & Nakasato, N., 2011, ApJ, 729, 16 CrossRefGoogle Scholar
Kroupa, P., Tout, C. A., & Gilmore, G., 1993, MNRAS, 262, 545 CrossRefGoogle Scholar
Magrini, L., Vincenzo, F., Randich, S., et al. 2018, A&A, 618, A102 Google Scholar
Maiolino, R., Nagao, T., Grazian, A., et al. 2008, ApJ, 488, 463 Google Scholar
Matteucci, F. 1986, MNRAS, 221, 911 CrossRefGoogle Scholar
Mollá, M., Vlchez, J. M., Gavilán, M., & Daz, A. I. 2006, MNRAS, 372, 1069 CrossRefGoogle Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, 51, 457 CrossRefGoogle Scholar
Pilyugin, L. S., Vlchez, J. M., & Thuan, T. X. 2010, ApJ, 720, 1738 CrossRefGoogle Scholar
Renzini, A., & Voli, M. 1981, A&A, 94, 175 Google Scholar
Springel, V., Yoshida, N., & White, S. D. M. 2001, NA, 6, 79 CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105 CrossRefGoogle Scholar
Totani, T., Morokuma, T., Oda, T., Doi, M., & Yasuda, N. 2008, PASJ, 60, 1327 CrossRefGoogle Scholar
Ventura, P., Di Criscienzo, M., Carini, R., & D’Antona, F. 2013, MNRAS, 431, 3642 CrossRefGoogle Scholar
Vincenzo, F., Belfiore, F., Maiolino, R., Matteucci, F., & Ventura, P. 2016, MNRAS, 458, 3466 CrossRefGoogle Scholar
Vincenzo, F., & Kobayashi, C. 2018a, A&A, 610, L16 Google Scholar
Vincenzo, F., & Kobayashi, C. 2018b, MNRAS, 478, 155 CrossRefGoogle Scholar