Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-09T20:47:18.141Z Has data issue: false hasContentIssue false

On the origin of giant planets and their hosts

Published online by Cambridge University Press:  09 March 2010

Misha Haywood*
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; 92190 Meudon, France email: Misha.Haywood@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The correlation between stellar metallicity and giant planets has been tentatively explained by the possible increase of planet formation probability in stellar disks with enhanced amount of metals. There are two caveats to this explanation. First, giant stars with planets do not show a metallicity distribution skewed towards metal-rich objects, as found for dwarfs. Second, the correlation with metallicity is not valid at intermediate metallicities, for which it can be shown that giant planets are preferentially found orbiting thick disk stars.

None of these two peculiarities is explained by the proposed scenarios of giant planet formation. We contend that they are galactic in nature, and probably not linked to the formation process of giant planets. It is suggested that the same dynamical effect, namely the migration of stars in the galactic disk, is at the origin of both features, with the important consequence that most metal-rich stars hosting giant planets originate from the inner disk. A planet-metallicity correlation similar to the observed one is easily obtained if stars from the inner disk have a higher percentage of giant planets than stars born at the solar radius, with no specific dependence on metallicity. We propose that the density of H2 in the inner galactic disk (the molecular ring) could play a role in setting the high percentage of giant planets that originate from this region.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010