Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T19:06:42.861Z Has data issue: false hasContentIssue false

On the gamma-ray burst – gravitational wave association in GW150914

Published online by Cambridge University Press:  23 June 2017

Agnieszka Janiuk
Affiliation:
Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland email: agnes@cft.edu.pl
Szymon Charzynski
Affiliation:
Chair of Mathematical Methods in Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa, Poland email: szycha@fuw.edu.pl
Michal Bejger
Affiliation:
Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland email: bajger@camk.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hyperaccreting disks around black holes are the engines that drive outflows and jets in gamma ray bursts (GRBs). The torus formed after the core collapse or a compact binary merger is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrinos rather than photon emission. Hyperaccretion powers the ultra-relativistic jets, where the GRB prompt emission originates. The neutrons produced in the disk and also in the outflowing material are necessary for the production of heavier nuclei. We discuss here the observable consequences of nucleosynthesis and we also apply the scenario of hyperaccretion to the gravitational wave source, GW150914. Temporal coincidence reported by the Fermi satellite suggested that the black hole merger might be accompanied with a GRB. We propose that a collapsing massive star and a black hole in a close binary could lead to such event. Gravitational wave emission due to the merger of collapsed core and the companion black hole might then coincide with a weak GRB.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbott, B. P., et al., 2016, Phys. Rev. Lett., 116, 061102 Google Scholar
Barkov, M. V. & Baushev, A. N. 2011, New Astr., 16, 46 Google Scholar
Barkov, M. V. & Komissarov, S. S. 2010, MNRAS, 401, 1644 Google Scholar
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433 Google Scholar
Campanelli, M., Lousto, C. O., Marronetti, P., & Zlochower, Y. 2006, Phys. Rev. Lett., 96, 11 Google Scholar
Connaughton, V., et al. 2016, ApJ Lett., 826, 6 Google Scholar
Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706 Google Scholar
Fishbone, L. G., & Moncrief, V. 1976, ApJ, 207, 962 Google Scholar
Gammie, C. F., McKinney, J. C., & Tth, G. 2003, ApJ, 589, 444 Google Scholar
Greiner, J, Burgess, J. M., Savchenko, V., & Yu, H.-F. 2016, ApJ Lett., 827, 38 Google Scholar
Janiuk, A., Bejger, M., Charzynski, S., & Sukova, P. 2017, New Astr, 51, 7 CrossRefGoogle Scholar
Janiuk, A. 2014, A&A, 568, 105 Google Scholar
Janiuk, A., Mioduszewski, P., & Moscibrodzka, M. 2013, ApJ, 776, 105 Google Scholar
Janiuk, A., Charzynski, S., & Bejger, M. 2013b, A&A, 560, 25 Google Scholar
Janiuk, A., & Yuan, Y. F. 2010, A&A, 509, 55 Google Scholar
Janiuk, A., Yuan, Y. F., Perna, R., & Di Matteo, T. 2007, ApJ, 664, 1011 Google Scholar
Janiuk, A. 2016, submitted, arXiv:1609.09361Google Scholar
Löffler, F., et al. 2012, Class. Q. Grav., 29, 11 Google Scholar
Li, L. X., & Paczynski, B. P. 1998, ApJ, 507, 59 Google Scholar
Mc Kinney, J. C., & Gammie, C. F. 2004, ApJ, 611, 977 Google Scholar
Noble, S. C., Gammie, C. F., McKinney, J. C., & Del Zanna, L. 2006, ApJ, 641, 626 CrossRefGoogle Scholar
Pretorius, F.,2005, Class. Q. Grav., 22, 425 Google Scholar
Popham, R., Woosley, S. E. & Fryer, C. 1999, ApJ, 518, 356 Google Scholar