Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-29T13:15:44.919Z Has data issue: false hasContentIssue false

NGC 3125-A1 revisited at higher spectral resolution with COS G160M

Published online by Cambridge University Press:  29 August 2024

A. Wofford*
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, Ensenada 22860, México
A. Sixtos
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, Ensenada 22860, México
L. Smith
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
S. Charlot
Affiliation:
Sorbonne Université, UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
G. Bruzual
Affiliation:
Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, C.P. 58089, México
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Super star cluster (SSC) A1 in starburst galaxy NGC 3125 has the strongest broad He II λ1640 emission line ever observed in the nearby Universe and constitutes an important template for interpreting observations of galaxies that are located out to a redshift of z∼3. We use observations of SSC A1 obtained with the Cosmic Origins Spectrograph (COS) on board of the Hubble Space Telescope (HST) in order to check if there is a contribution of nebular emission to the He II line. In addition, we compare the COS G130M + G160M observations of A1 (1150 – 1750A) to the latest Charlot & Bruzual population synthesis models, which account for Very Massive Stars (VMS) of up to 300 Mȯ. A model with Z = 0.008 and age = 2.4 Myr provides a very reasonable fit to the C III λ1175, N V λ1240, C IV λ1550, He II λ1640, and N IV λ1718 stellar-wind features, although the O V λ1371 line is not well reproduced. Overall, our results show the great improvement of stellar evolution and population synthesis models over the past decade, and in particular, the improved formulation of stellar mass loss rates.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bosch, G., Terlevich, E., and Terlevich, R. 2009, A J, 137, 3437B Google Scholar
Brands, S. A., de Koter, A., Bestenlehner, J. M., et al. 2022, A & A Google Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151 CrossRefGoogle Scholar
Chandar, R., Leitherer, C., Tremonti, C. 2004, ApJ, 604, 153 CrossRefGoogle Scholar
Chen, Y., Bressan, Girardi, L., et al. 2015, MNRAS, 452, 1068 CrossRefGoogle Scholar
Crowther, P. A., Schnurr, O., Hirschi, R. et al. 2010, MNRAS, 408, 731 Google Scholar
Eldridge, J. J., Stanway, E. R., Xiao, et al. 2017, PASA, 34, 58E Google Scholar
Hadfield, L. J., Crowther, P. A. 2006, MNRAS, 368, 1822 CrossRefGoogle Scholar
Martins, F., Palacios, A. 2022, A & A, 659, 163 Google Scholar
Plat, A., Charlot, S., Bruzual, G., et al. 2019, MNRAS, 490, 978 Google Scholar
Saxena, A., Pentericci, L., Mirabelli, M. et al. 2020, A & A, 636, 47 CrossRefGoogle Scholar
Shapley, A., Steidel, C. C., Pettini, M., et al. 2003, ApJ, 588, 65S Google Scholar
Vink, J. S., Muijres, L. E., Anthonisse, B., et al. 2011, A & A, 531A, 132V Google Scholar
Wofford, A., Leitherer, C., Chandar, R., et al. 2014, ApJ, 781, 122 Google Scholar