Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T12:36:59.699Z Has data issue: false hasContentIssue false

Nearby void dwarf galaxies: recent results, the ongoing project and prospects

Published online by Cambridge University Press:  30 October 2019

Simon A. Pustilnik
Affiliation:
Special Astrophysical Observatory of RAS, 369167, Nizhnij Arkhyz, Karachai-Circessia, Russia emails: sap@sao.ru, dim@sao.ru
Dmitri I. Makarov
Affiliation:
Special Astrophysical Observatory of RAS, 369167, Nizhnij Arkhyz, Karachai-Circessia, Russia emails: sap@sao.ru, dim@sao.ru
Arina L. Tepliakova
Affiliation:
Special Astrophysical Observatory of RAS, 369167, Nizhnij Arkhyz, Karachai-Circessia, Russia emails: sap@sao.ru, dim@sao.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Properties of dwarf galaxies formed and evolved in the lowest density environment remain largely unexplored and poorly understood. Especially this concerns the low-mass end (Mbar < 109M). We overview the results of systematic study of a hundred void dwarfs from the nearby Lynx-Cancer void. We describe the ongoing project aiming to form Nearby Void galaxy sample (R < 25 Mpc) over the whole sky. 1354 objects with distances less than 25 Mpc fall within 25 voids delineated by 460 luminous galaxies/groups. The void major sizes range from 13 to 37 Mpc. 1088 of 1354 void galaxies reside deeply in voids, having distances to the nearest luminous neighbour of 2–11 Mpc. 195 nearest void galaxies reside in the Local Volume. We summarize the main statistical properties of the new sample and outline the prospects of study of both, the void dwarf properties and the fine structure of voids.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Aragon-Calvo, M., & Szalay, A., 2013, MNRAS, 428, 3409 CrossRefGoogle Scholar
Chengalur, J. N., & Pustilnik, S. A., 2013, MNRAS, 428, 1579 CrossRefGoogle Scholar
Chengalur, J. N., Pustilnik, S. A., & Egorova, E. S., 2017, MNRAS, 465, 2342 CrossRefGoogle Scholar
Einasto, J., Suhhonenko, I., Hutsi, G., et al., 2011, A&A, 534, A128 Google Scholar
Izotov, Y. I., Thuan, T. X., Guseva, N. G., & Liss, S. E., 2018, MNRAS, 473, 1956 CrossRefGoogle Scholar
Kniazev, A. Y., Egorova, E. S. & Pustilnik, S. A., 2018, MNRAS, 479, 3842 CrossRefGoogle Scholar
Perepelitsyna, Y. A., Pustilnik, S. A., & Kniazev, A. Y., 2014, Astrophys. Bull., 69, 247 (arXiv:1408.0613)CrossRefGoogle Scholar
Pustilnik, S. A., & Tepliakova, A. L., 2011, MNRAS, 415, 1188 CrossRefGoogle Scholar
Pustilnik, S. A., & Martin, J.-M., 2016, A&A, 596, A86 Google Scholar
Pustilnik, S. A., Tepliakova, A. L., Kniazev, A. Y., Martin, J.-M., & Burenkov, A. N., 2010, MNRAS, 401, 333 CrossRefGoogle Scholar
Pustilnik, S. A., Perepelitsyna, Y. A., & Kniazev, A. Y., 2016, MNRAS, 463, 670 CrossRefGoogle Scholar
Tweed, D. P., Mamon, G. A., Thuan, T. X., Cattaneo, A., Dekel, A., Menci, N., Calura, F., & Silk, J., 2018, MNRAS, 477, 1427 CrossRefGoogle Scholar