Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-56sbs Total loading time: 0.21 Render date: 2021-09-22T03:23:38.284Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Microarcsecond Astrometry with MCAO Using a Diffractive Mask

Published online by Cambridge University Press:  29 April 2014

S. Mark Ammons
Affiliation:
Lawrence Livermore National Laboratory Physics Division L-210 7000 East Ave., Livermore, CA 94550 email: ammons1@llnl.gov
Eduardo A. Bendek
Affiliation:
University of Arizona
Olivier Guyon
Affiliation:
University of Arizona National Astronomical Observatory of Japan, Subaru Telescope
Bruce Macintosh
Affiliation:
Lawrence Livermore National Laboratory Physics Division L-210 7000 East Ave., Livermore, CA 94550 email: ammons1@llnl.gov
Dmitry Savransky
Affiliation:
Lawrence Livermore National Laboratory Physics Division L-210 7000 East Ave., Livermore, CA 94550 email: ammons1@llnl.gov
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new ground-based technique to detect or follow-up long-period, potentially habitable exoplanets via precise relative astrometry of host stars using Multi-Conjugate Adaptive Optics (MCAO) on 8 meter telescopes equipped with diffractive masks. MCAO improves relative astrometry both by cancellation of high-altitude atmospheric layers, which induce dynamic focal-plane distortions, and the improvement of centroiding precision with sharper PSFs. However, mass determination of habitable exoplanets requires multi-year reference grid stability of ~1–10 μas or nanometer-level stability on the long-term average of out-of-pupil phase errors, which is difficult to achieve with MCAO (e.g., Meyer et al. 2011). The diffractive pupil technique calibrates dynamic distortion via extended diffraction spikes generated by a dotted primary mirror, which are referenced against a grid of background stars (Guyon et al. 2012). The diffractive grid provides three benefits to relative astrometry: (1) increased dynamic range, permitting observation of V < 10 stars without saturation; (2) calibration of dynamic distortion; and (3) a spectrum of the target star, which can be used to calibrate the magnitude of differential atmospheric refraction to the microarcsecond level. A diffractive 8-meter telescope with diffraction-limited MCAO in K-band reaches < 3–5 μas relative astrometric error per coordinate perpendicular to the zenith vector in one hour on a bright target star in fields of moderate stellar density (~10–40 stars arcmin−2). We present preliminary on-sky results of a test of the diffractive mask on the Nickel telescope at Lick Observatory.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Ammons, S. M., Bendek, E., & Guyon, O. 2011, proc. SPIE, 8151, 25Google Scholar
Ammons, S. M., Bendek, E., Guyon, O., Macintosh, B., & Savransky, D. 2012, proc. SPIE, 8447, 0PGoogle Scholar
Anglada-Escudé, G., Boss, A., Weinberger, A., Thompson, I., Butler, R., Vogt, S., & Rivera, E. 2012, ApJ, 746, 37CrossRefGoogle Scholar
Anglada-Escudé, G., et al. 2012, ApJ, 751, 16CrossRefGoogle Scholar
Bendek, E., Ammons, S. M., Shankar, H., & Guyon, O. 2011, proc. SPIE, 8151, 26Google Scholar
Benedict, G. F., et al. 1999, AJ, 118, 1086CrossRefGoogle Scholar
Cameron, P. B., Britton, M., & Kulkarni, S. 2009, AJ, 137, 83CrossRefGoogle Scholar
Dupuy, T., Liu, M., Bowler, B., Cushing, M., Helling, C., Witte, S., & Hauschildt, P. 2010, ApJ, 721, 1725CrossRefGoogle Scholar
Dupuy, T. & Liu, M. 2012, ApJ, 201, 19CrossRefGoogle Scholar
Fritz, T., Gillessen, S., Trippe, S., Ott, T., Bartko, H., Pfuhl, O., Dodds-Eden, K., Davies, R., Eisenhauer, F., & Genzel, R. 2010, MNRAS, 401, 1177CrossRefGoogle Scholar
Guyon, O., Bendek, E., Ammons, S. M., Shao, M., Shaklan, S., Woodruff, J., & Belikov, R. 2011, proc. SPIE, 8151, 24Google Scholar
Guyon, O., Bendek, E., Eisner, J., Angel, R., Woolf, N., Milster, T., Ammons, S. M., Shao, M., Shaklan, S., Levine, M., Nemati, B., Pitman, J., Woodruff, J., & Belikov, R. 2012, ApJS, 200, 11CrossRefGoogle Scholar
Haghighipour, N., Vogt, S., Butler, R., Rivera, E., Laughlin, G., Meschiari, S., & Henry, G. 2010, ApJ, 715, 271CrossRefGoogle Scholar
Johnson, J., et al. 2012, AJ, 143, 111CrossRefGoogle Scholar
Lu, J., Ghez, A., Yelda, S., Do, T., Clarkson, W., McCrady, N., & Morris, M. 2010, proc. SPIE, 7736, 51Google Scholar
Macintosh, B., Anthony, A., Atwood, J., et al. 2012, proc. SPIE, 8446, 1UGoogle Scholar
Majewski, S., et al. 2009, Chapter 4 of SIM Lite Book, (arXiv:0902.2759)Google Scholar
Meyer, E., Kürster, M., Arcidiacono, C., Ragazzoni, R., & Rix, H.-W. 2011, A&A, 532, 16Google Scholar
Neichel, B., et al. 2012, proc. SPIE, 8447, 4QGoogle Scholar
Pravdo, S. & Shaklan, S. 1996, ApJ, 465, 264CrossRefGoogle Scholar
Shao, M., Marcy, G., Catanzarite, J., Edberg, S., Leger, A., Malbet, F., Queloz, D., Muterspaugh, M., Beichman, C., Fischer, D., Ford, E., Olling, R., Kulkarni, S., Unwin, S., & Traub, W. 2009, astro2010, 271 (http://arxiv.org/abs/0904.0965)Google Scholar
Shao, M., Catanzarite, J., & Pan, X. 2010, ApJ, 720, 357CrossRefGoogle Scholar
Sozzetti, A. 2010, EAS Publications Series, 42, 55CrossRefGoogle Scholar
Trippe, S., Davies, R., Eisenhauer, F., Schreiber, N., Fritz, T., & Genzel, R. 2010, MNRAS, 402, 1126CrossRefGoogle Scholar
Unwin, S., Shao, M., & Edberg, S. 2008, proc. SPIE, 7013, 78Google Scholar
Wehrle, A., et al. 2009, Chapter 11 of SIM Lite BookGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microarcsecond Astrometry with MCAO Using a Diffractive Mask
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microarcsecond Astrometry with MCAO Using a Diffractive Mask
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microarcsecond Astrometry with MCAO Using a Diffractive Mask
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *