Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T15:27:09.577Z Has data issue: false hasContentIssue false

Large reservoirs of turbulent diffuse gas around high-z starburst galaxies

Published online by Cambridge University Press:  04 June 2020

E. Falgarone
Affiliation:
Laboratoire de Physique de l’ENS, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France email: edith.falgarone@ens.fr
A. Vidal-Garca
Affiliation:
Laboratoire de Physique de l’ENS, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France email: edith.falgarone@ens.fr
B. Godard
Affiliation:
Laboratoire de Physique de l’ENS, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France email: edith.falgarone@ens.fr LERMA, Observatoire de Paris, CNRS, 61 avenue de l’Observatoire, 75014 Paris, France
M. A. Zwaan
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany
C. Herrera
Affiliation:
IRAM, 300 rue de la Piscine, Domaine universitaire, 38406 Saint Martin d’Hères, France
R. J. Ivison
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany
E. Bergin
Affiliation:
University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109, USA
P. M. Andreani
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany
A. Omont
Affiliation:
UMPC Université Paris 6 & Institut d’Astrophysique de Paris, CNRS, 75014 Paris, France
F. Walter
Affiliation:
Max Planck Institute für Astronomie, Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starburst galaxies at z ∼ 2 – 4 are among the most intensely star-forming galaxies in the universe. The way they accrete their gas to form stars at such high rates is still a controversial issue. ALMA has detected the CH+ (J = 1-0) line in emission and/or absorption in all the gravitationally lensed starburst galaxies targeted so far at z ∼ 3. Its unique spectroscopic and chemical properties enable CH+ to highlight the sites of most intense dissipation of mechanical energy. The absorption lines reveal highly turbulent, massive reservoirs of low-density molecular gas. The broad emission lines, arising in myriad UV-irradiated molecular shocks, reveal powerful galactic winds. The CH+ lines therefore probe the fate of prodigious energy releases, due to infall and/or outflows, and primarily stored in turbulence before being radiated by cool molecular gas. The turbulent reservoirs act as mass and energy buffers over the duration of the starburst phase.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Douglas, A. E. & Herzberg, G. 1941, ApJ, 94, 38110.1086/144342CrossRefGoogle Scholar
Eales, S., Dunne, L., Clements, D., et al. 2010, PASP, 122, 49910.1086/653086CrossRefGoogle Scholar
Falgarone, E., Zwaan, M.A., Godard, B., et al. 2017, Nature, 548, 43010.1038/nature23298CrossRefGoogle Scholar
Gerin, M., Neufeld, D. A., & Goicoechea, J. R. 2016, ARAA, 54, 18110.1146/annurev-astro-081915-023409CrossRefGoogle Scholar
Godard, B., Falgarone, E., & Pineau des Forêts, G. 2014, A&A, 570, A27Google Scholar
Godard, B., Pineau des Forêts, G.Lesaffre, P., et al. 2019, A&A, 622, A100Google Scholar
Ivison, R. J., Swinbank, A. M., Swinyard, B., et al. 2010, A&A, 518, L35Google Scholar
Kennicutt, Jr Robert C. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, ARAA, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Oliver, S. J., Wang, L., Smith, A. J., et al. 2010, A&A, 518, L21Google Scholar
Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521CrossRefGoogle Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARAA, 43, 769CrossRefGoogle Scholar
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A 460, 397Google Scholar
Zabl, J., Bouché, N. F., Schroetter, L., et al. 2019, MNRAS, 485, 196110.1093/mnras/stz392CrossRefGoogle Scholar
Zhang, Z.-Y., Ivison, R. J., George, R. D., et al. 2018, MNRAS, 481, 59CrossRefGoogle Scholar