Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T02:15:12.137Z Has data issue: false hasContentIssue false

Influence of the Void Environment on Chemical Abundances in Dwarf Galaxies and Implications for Connecting Star Formation and Halo Mass

Published online by Cambridge University Press:  30 October 2019

Kelly A. Douglass*
Affiliation:
Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA email: kelly.a.douglass@drexel.edu
Michael S. Vogeley
Affiliation:
Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA email: kelly.a.douglass@drexel.edu
Renyue Cen
Affiliation:
Department of Astrophysics, Princeton University, Peyton Hall, Princeton, NJ, 05844, USA
*
Present address: Department of Physics & Astronomy, University of Rochester, 500 Wilson Blvd., Rochester, NY 14611, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study how the void environment affects the chemical evolution of galaxies by comparing the metallicity of dwarf galaxies in voids with dwarf galaxies in denser regions. Using spectroscopic observations from SDSS DR7, we estimate oxygen and nitrogen abundances of 889 void dwarf galaxies and 672 dwarf galaxies in denser regions. A substitute for the [OII] λ3727 doublet is developed, permitting oxygen abundance estimates of SDSS dwarf galaxies at all redshifts with the direct method. We find that void dwarf galaxies have about the same oxygen abundances and slightly lower N/O ratios than dwarf galaxies in denser environments. The lower N/O ratios seen in void dwarf galaxies may indicate both delayed star formation and a dependence of cosmic downsizing on the large-scale environment. Similar oxygen abundances in the two dwarf galaxy populations might be evidence of larger ratios of dark matter halo mass to stellar mass in voids.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Beygu, B., Kreckel, K., van der Hulst, J. M., et al . 2016, MNRAS, 458, 394 CrossRefGoogle Scholar
Bond, J. R., Kofman, L., & Pogosyan, D. 1996, Nature, 380, 603 CrossRefGoogle Scholar
Cen, R. 2011, ApJ, 741, 99 CrossRefGoogle Scholar
Douglass, K. A. & Vogeley, M. S. 2017b, ApJ, 837, 42 CrossRefGoogle Scholar
Douglass, K. A., Vogeley, M. S., & Cen, R. 2018, ApJ, 864, 144 CrossRefGoogle Scholar
El-Ad, H. & Piran, T. 1997, ApJ, 491, 421 CrossRefGoogle Scholar
Goldberg, D. M., Jones, T. D., Hoyle, F., et al . 2005, ApJ, 621, 643 CrossRefGoogle Scholar
Gottlöber, S., łLokas, E. L., Klypin, A., & Hoffman, Y. 2003, MNRAS, 344, 715 CrossRefGoogle Scholar
Grogin, N. A., & Geller, M. J. 1999, AJ, 118, 2561 CrossRefGoogle Scholar
Grogin, N. A., & Geller, M. J. 2000, AJ, 119, 32 CrossRefGoogle Scholar
Hoyle, F. & Vogeley, M. S. 2002, ApJ, 566, 641 CrossRefGoogle Scholar
Hoyle, F., Rojas, R. R., Vogeley, M. S., & Brinckmann, J. 2005, ApJ, 620, 618 CrossRefGoogle Scholar
Hoyle, F., Vogeley, M. S., & Pan, D. 2012, MNRAS, 426, 3041 CrossRefGoogle Scholar
Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G., & Thuan, T. X. 2006, A&A, 448, 955 Google Scholar
Jung, I., Lee, J., & Yi, S. K. 2014, ApJ, 794, 74 CrossRefGoogle Scholar
Moorman, C. M., Vogeley, M. S., Hoyle, F., et al . 2015, ApJ, 810, 108 CrossRefGoogle Scholar
Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae and active galactic nuclei, (University Science Books)CrossRefGoogle Scholar
Pan, D. C., Vogeley, M. S., Hoyle, F., Choi, Y.-Y., & Park, C. 2012, MNRAS, 421, 926 CrossRefGoogle Scholar
Park, C., Choi, Y.-Y., Vogeley, M. S., et al . 2007, ApJ, 658, 898 CrossRefGoogle Scholar
Patiri, S. G., Prada, F., Holtzman, J., Klypin, A., & Betancort-Rijo, J. 2006, MNRAS, 372, 1710 CrossRefGoogle Scholar
Pustilnik, S. A., Engels, D., Kniazev, A. Y., et al . 2006, AstL, 32, 228 Google Scholar
Rojas, R. R., Vogeley, M. S., Hoyle, F., & Brinckmann, J. 2004, ApJ, 617, 50 CrossRefGoogle Scholar
Rojas, R. R., Vogeley, M. S., Hoyle, F., & Brinckmann, J. 2005, ApJ, 624, 571 CrossRefGoogle Scholar
Sánchez Almeida, J., Pérez-Montero, E., Morales-Luis, A. B., et al . 2016, ApJ, 819, 110 CrossRefGoogle Scholar
Tonnesen, S. & Cen, R. 2015, ApJ, 812, 104 CrossRefGoogle Scholar
van de Weygaert, R., & Platen, E. 2011, IJMPS, 1, 41 Google Scholar
van Zee, L. & Haynes, M. P. 2006, ApJ, 636, 214 CrossRefGoogle Scholar
von Benda-Beckmann, A. M. & Müller, V. 2008, MNRAS, 384, 1189 CrossRefGoogle Scholar