Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-14T16:20:53.009Z Has data issue: false hasContentIssue false

High angular resolution observations of AGB stars

Published online by Cambridge University Press:  30 December 2019

Eric Lagadec*
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Lagrange, France email: elagadec@oca.eu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mass loss of AGB stars is a key process for the late stages of evolution of low and intermediate mass stars and the chemical enrichment of galaxies. It is not fully understood yet, as it is the result of a complex combination of pulsation, convection, chemistry, shocks and dust formation.

In this review I present what high angular resolution observations can teach us about this mass-loss process. Instruments such as SPHERE/VLT, Gravity and AMBER at the VLTI, and ALMA give us the possibility to map AGB stars from the optical to millimetre wavelengths with resolutions down to 1 milliarcsec. Moving from the surface of the star outwards, I present how high angular resolution observations can now produce images of the surface of the closest AGB stars and study convective motion at their surfaces, map their extended molecular atmospheres and the seeds for dust. The dust formation zone can also be mapped and its dust content characterized with mid-infrared interferometry, while ALMA can map the gas and its kinematics. I will conclude by showing how high angular resolution can help us study the impact of a companion on mass loss.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Balick, B., & Frank, A. 2002, ARA&A, 40, 439 CrossRefGoogle Scholar
Boffin, H. M. J., Miszalski, B., Rauch, T., et al. 2012, Science, 338, 773 CrossRefGoogle Scholar
Decin, L., Richards, A. M. S., Waters, L. B. F. M., et al. 2017, A&A, 608, A55 Google Scholar
Freytag, B., & Höfner, S. 2008, A&A, 483, 571 Google Scholar
Freytag, B., Liljegren, S., & Höfner, S. 2017, A&A, 600, A137 Google Scholar
Gautschy-Loidl, R., Höfner, S., Jørgensen, U. G., & Hron, J. 2004, A&A, 422, 289 Google Scholar
Haubois, X., Perrin, G., Lacour, S., et al. 2009, A&A, 508, 923 Google Scholar
Homan, W., Danilovich, T., Decin, L., et al. 2018, A&A, 614, A113 Google Scholar
Höfner, S., & Olofsson, H. 2018, ARA&A, 26, 1 Google Scholar
Ireland, M. J., Scholz, M., & Wood, P. R. 2011, MNRAS, 418, 114 CrossRefGoogle Scholar
Kamiński, T., Wong, K. T., Schmidt, M. R., et al. 2016, A&A, 592, A42 Google Scholar
Karovicova, I., Wittkowski, M., Ohnaka, K., et al. 2013, A&A, 560, A75 Google Scholar
Kervella, P., Homan, W., Richards, A. M. S., et al. 2016, A&A, 596, A92 Google Scholar
Kervella, P., Montargès, M., Lagadec, E., et al. 2015, A&AL, 578, A77 Google Scholar
Khouri, T., Maercker, M., Waters, L. B. F. M., et al. 2016, A&A, 591, A70 Google Scholar
Kim, H., Trejo, A., Liu, S.-Y., et al. 2017, Nature Astronomy, 1, 0060 CrossRefGoogle Scholar
Lopez, B., Lagarde, S., Jaffe, W., et al. 2014, The Messenger, 157, 5 Google Scholar
Lykou, F., Zijlstra, A. A., Kluska, J., et al. 2018, MNRAS, 480, 1006 CrossRefGoogle Scholar
Maercker, M., Mohamed, S., Vlemmings, W. H. T., et al. 2012, Nature, 490, 232 CrossRefGoogle Scholar
Matsuura, M., Barlow, M. J., Zijlstra, A. A., et al. 2009, MNRAS, 396, 918 CrossRefGoogle Scholar
Mohamed, S., & Podsiadlowski, P. 2012, Baltic Astronomy, 21, 88 Google Scholar
Monnier, J. D., Berger, J.-P., Le Bouquin, J.-B., et al. 2014, SPIE, 9146, 91461Q Google Scholar
Montargès, M., Chiavassa, A., Kervella, P., et al. 2017, A&A, 605, A108 Google Scholar
Montargès, M., Norris, R., Chiavassa, A., et al. 2018, A&A, 614, A12 Google Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2016, A&A, 589, A91 Google Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2017, Nature, 548, 310 CrossRefGoogle Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2017, A&A, 597, A20 Google Scholar
Paladini, C., Baron, F., Jorissen, A., et al. 2018, Nature, 553, 310 CrossRefGoogle Scholar
Paladini, C., Klotz, D., Sacuto, S., et al. 2017, A&A, 600, A136 Google Scholar
Ramstedt, S., Mohamed, S., Vlemmings, W. H. T., et al. 2014, A&A, 570, L14 Google Scholar
Srinivasan, S., Meixner, M., Leitherer, C., et al. 2009, AJ, 137, 4810 CrossRefGoogle Scholar
Stewart, P. N., Tuthill, P. G., Monnier, J. D., et al. 2016, MNRAS, 455, 3102 CrossRefGoogle Scholar
Van de Sande, M., Sundqvist, J. O., Millar, T. J., et al. 2018, A&A, 616, A106 Google Scholar
Vlemmings, W. H. T., Khouri, T., Beck, E. D., et al. 2018, A&A, 613, L4 Google Scholar
Vlemmings, W., Khouri, T., O’Gorman, E., et al. 2017, Nature Astronomy, 1, 848 CrossRefGoogle Scholar
Wittkowski, M., Chiavassa, A., Freytag, B., et al. 2016, A&A, 587, A12 Google Scholar
Wittkowski, M., Hofmann, K.-H., Höfner, S., et al. 2017, A&A, 601, A3 Google Scholar