Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-prhj4 Total loading time: 0.324 Render date: 2023-02-02T11:11:57.576Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Formation of young massive clusters from turbulent molecular clouds

Published online by Cambridge University Press:  31 March 2017

Michiko S. Fujii
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo, Japan email: michiko.fujii@nao.ac.jp
Simon Portegies Zwart
Affiliation:
Leiden Observatory, Leiden University, Leiden 2300 RA, The Netherlands email: spz@strw.leidenuniv.nl
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We simulate the formation and evolution of young star clusters from turbulent molecular clouds using smoothed-particle hydrodynamics and direct N-body methods. We find that the shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with power-law slopes of β = −1.73. The superposition of mass functions turn out to have a power-law slope of < −2. The mass of the most massive cluster formed from a single molecular cloud with mass Mg scales with 6.1 M0.51g. The molecular clouds that tend to form massive clusters are much denser than those typical found in the Milky Way. The velocity dispersion of such molecular clouds reaches 20km s−1 and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bastian, N., Adamo, A., Gieles, M., Lamers, H. J. G. L. M., Larsen, S. S., Silva-Villa, E., Smith, L. J., Kotulla, R., Konstantopoulos, I. S., Trancho, G., & Zackrisson, E., 2011, MNRAS, 417, L6 CrossRefGoogle Scholar
Bate, M. R., 2012, MNRAS, 419, 3115 CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., & Vine, S. G., 2003, MNRAS, 343, 413 CrossRefGoogle Scholar
Bonnell, I. A., Clark, P., & Bate, M. R., 2008, MNRAS, 389, 1556 CrossRefGoogle Scholar
Chandar, R., Whitmore, B. C., Calzetti, D., Di Nino, D., Kennicutt, R. C., Regan, M., & Schinnerer, E., 2011, ApJ, 727, 88 CrossRefGoogle Scholar
Dale, J. E., Ngoumou, J., Ercolano, B., & Bonnell, I. A., 2014, MNRAS, 442, 694 CrossRefGoogle Scholar
Eisenstein, D. J. & Hut, P., 1998, ApJ, 498, 137 CrossRefGoogle Scholar
Federrath, C., 2013, MNRAS, 436, 3167 CrossRefGoogle Scholar
Federrath, C. & Klessen, R. S., 2012, ApJ, 761, 156 CrossRefGoogle Scholar
Federrath, C. & Klessen, R. S., 2013, ApJ, 763, 51 CrossRefGoogle Scholar
Federrath, C., Schrön, M., Banerjee, R., & Klessen, R. S., 2014, ApJ, 790, 128 CrossRefGoogle Scholar
Feigelson, E. D., Getman, K. V., Townsley, L. K., Broos, P. S., Povich, M. S., Garmire, G. P., King, R. R., Montmerle, T., Preibisch, T., Smith, N., Stassun, K. G., Wang, J., Wolk, S., & Zinnecker, H., 2011, ApJs, 194, 9 CrossRefGoogle Scholar
Fujii, M., Iwasawa, M., Funato, Y., & Makino, J., 2009, ApJ, 695, 1421 CrossRefGoogle Scholar
Fujii, M. S., 2015, PASJ, 67, 59 Google Scholar
Fujii, M. S. & Portegies Zwart, S., 2013, MNRAS, 430, 1018 CrossRefGoogle Scholar
Fujii, M. S. & Portegies Zwart, S., 2015, MNRAS, 449, 726 CrossRefGoogle Scholar
Fukui, Y., Ohama, A., Hanaoka, N., Furukawa, N., Torii, K., Dawson, J. R., Mizuno, N., Hasegawa, K., Fukuda, T., Soga, S., Moribe, N., Kuroda, Y., Hayakawa, T., Kawamura, A., Kuwahara, T., Yamamoto, H., Okuda, T., Onishi, T., Maezawa, H., & Mizuno, A., 2014, ApJ, 780, 36 CrossRefGoogle Scholar
Furukawa, N., Dawson, J. R., Ohama, A., Kawamura, A., Mizuno, N., Onishi, T., & Fukui, Y., 2009, ApJl, 696, L115 CrossRefGoogle Scholar
Gerritsen, J. P. E. & Icke, V., 1997, A&A, 325, 972 Google Scholar
Hernquist, L. & Katz, N., 1989, ApJs, 70, 419 CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A., 2000, MNRAS, 315, 543 CrossRefGoogle Scholar
Kirk, J. M., Gear, W. K., Fritz, J., Smith, M. W. L., Ford, G., Baes, M., Bendo, G. J., De Looze, I., Eales, S. A., Gentile, G., Gomez, H. L., Gordon, K., O'Halloran, B., Madden, S. C., Duval, J. R., Verstappen, J., Viaene, S., Boselli, A., Cooray, A., Lebouteiller, V., & Spinoglio, L., 2013, ArXiv e-printsGoogle Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F., 2012, ApJ, 745, 69 CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A., 2003, AR&A, 41, 57 Google Scholar
Larson, R. B., 1969, MNRAS, 145, 271 CrossRefGoogle Scholar
Moeckel, N. & Bate, M. R., 2010, MNRAS, 404, 721 CrossRefGoogle Scholar
Nitadori, K. & Makino, J., 2008, New Astronomy, 13, 498 CrossRefGoogle Scholar
Ohama, A., Dawson, J. R., Furukawa, N., Kawamura, A., Moribe, N., Yamamoto, H., Okuda, T., Mizuno, N., Onishi, T., Maezawa, H., Minamidani, T., Mizuno, A., & Fukui, Y., 2010, ApJ, 709, 975 CrossRefGoogle Scholar
Ostriker, E. C., Stone, J. M., & Gammie, C. F., 2001, ApJ, 546, 980 CrossRefGoogle Scholar
Pelupessy, F. I., 2005, PhD thesis, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The NetherlandsGoogle Scholar
Pelupessy, F. I., van der Werf, P. P., & Icke, V., 2004, A&A, 422, 55 Google Scholar
Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S. L. W., Drost, N., & Portegies Zwart, S. F., 2013, A&A, 557, A84 Google Scholar
Pflamm-Altenburg, J., Weidner, C., & Kroupa, P., 2007, ApJ, 671, 1550 CrossRefGoogle Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Balbi, A., Banday, A. J., Barreiro, R. B., et al., 2011, A&A, 536, A23 Google Scholar
Portegies Zwart, S. & Boekholt, T., 2014, ApJL, 785, L3 CrossRefGoogle Scholar
Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., & de Vries, N., 2013, Computer Physics Communications, 183, 456 CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M., 2010, AR&A, 48, 431 Google Scholar
Schechter, P., 1976, ApJ, 203, 297 CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of young massive clusters from turbulent molecular clouds
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Formation of young massive clusters from turbulent molecular clouds
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Formation of young massive clusters from turbulent molecular clouds
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *