Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-09T03:34:18.631Z Has data issue: false hasContentIssue false

The formation of the building blocks of peptides on interstellar dust grains

Published online by Cambridge University Press:  12 October 2020

N. F. W. Ligterink
Affiliation:
Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland email: niels.ligterink@csh.unibe.ch Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
J. Terwisscha van Scheltinga
Affiliation:
Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
V. Kofman
Affiliation:
Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
V. Taquet
Affiliation:
INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Florence, Italy
S. Cazaux
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, NL-2629 HS Delft, the Netherlands
J. K. Jørgensen
Affiliation:
Centre for Star and Planet Formation, Niels Bohr Institute & Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K., Denmark
E. F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching, Germany
H. Linnartz
Affiliation:
Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The emergence of life on Earth may have its origin in organic molecules formed in the interstellar medium. Molecules with amide and isocyanate groups resemble structures found in peptides and nucleobases and are necessary for their formation. Their formation is expected to take place in the solid state, on icy dust grains, and is studied here by far-UV irradiating a CH4:HNCO mixture at 20 K in the laboratory. Reaction products are detected by means of infrared spectroscopy and temperature programmed desorption - mass spectrometry. Various simple amides and isocyanates are formed, showing the importance of ice chemistry for their interstellar formation. Constrained by experimental conditions, a reaction network is derived, showing possible formation pathways of these species under interstellar conditions.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Agarwal, V. K., Schutte, W., Greenberg, J. M., Ferris, J. P., Briggs, R., Connor, S., van de Bult, C. P. E. M., & Baas, F. 1985, Origins of Life, 16, 1 Google Scholar
Barone, V., Latouche, C., Skouteris, D., Vazart, F., Balucani, N., Ceccarelli, C., & Lefloch, B. 2015, MNRAS, 453, L31 CrossRefGoogle Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007, A&A, 465, 3 Google Scholar
Coutens, A., Willis, E. R., Garrod, R. T., Müller, H. S. P., Bourke, T. L., Calcutt, H., Drozdovskaya, M. N., Jørgensen, J.K., Ligterink, N. F. W., Persson, M. V., Stèphan, G., van der Wiel, M. H. D., van Dishoeck, E.F., & Wampfler, S. F. 2018, A&A, 612, A107 Google Scholar
Goesmann, F., Rosenbauer, H., Bredehöft, J. H., Cabane, M., Ehrenfreund, P., Gautier, T., Giri, C., Krüger, H., Le Roy, L., MacDermott, A. J., McKenna-Lawlor, S., Meierhenrich, U. J., Muñoz-Caro, G. M., Raulin, F., Roll, R., Steele, A., Steininger, H., Sternberg, R., Szopa, C., Thiemann, W., Ulamec, S., et al. 2015, Science, 349, 6247 CrossRefGoogle Scholar
Henderson, B. L. & Gudipati, M. S. 2015, ApJ, 800, 1 Google Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427 10.1146/annurev-astro-082708-101654CrossRefGoogle Scholar
Hollis, J. M., Jewell, P. R., Lovas, F. J., & Remijan, A. 2004, ApJ, 613, 1 CrossRefGoogle Scholar
Hollis, J. M., Lovas, F. J., Remijan, Anthony J., Jewell, P. R., Ilyushin, V. V., & Kleiner, I. 2006, ApJ, 643, 1 10.1086/505110CrossRefGoogle Scholar
Jones, B. M., Bennett, C. J., & Kaiser, R. I. 2011, ApJ, 734, 2 10.1088/0004-637X/734/2/78CrossRefGoogle Scholar
Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., Lykke, J. M., Müller, H. S. P., van Dishoeck, E. F., Calcutt, H., Bjerkeli, P., Bourke, T. L., Drozdovskaya, M. N., Favre, C., Fayolle, E. C., Garrod, R. T., Jacobsen, S. K., Öberg, K. I., Persson, M. V., & Wampfler, S. F. 2016, A&A, 595, A117 Google Scholar
Ligterink, N. F. W., Paardekooper, D. M., Chuang, K.-J., Both, M. L., Cruz-Diaz, G. A., van Helden, J. H., & Linnartz, H. 2015, A&A, 584, A56 Google Scholar
Ligterink, N. F. W., Coutens, A., Kofman, V., Müller, H. S. P., Garrod, R. T., Calcutt, H., Wampfler, S. F., Jørgensen, J.K., Linnartz, H., & van Dishoeck, E. F. 2017, MNRAS, 469, 2 10.1093/mnras/stx890CrossRefGoogle Scholar
Ligterink, N. F. W., Terwisscha van Scheltinga, J., Taquet, V., Jørgensen, J. K., Cazaux, S., van Dishoeck, E. F., & Linnartz, H. 2018, MNRAS, 480, 3 10.1093/mnras/sty2066CrossRefGoogle Scholar
Noble, J. A., Theule, P., Congiu, E., Dulieu, F., Bonnin, M., Bassas, A., Duvernay, F., Danger, G., & Chiavassa, T. 2015, A&A, 576, A91 Google Scholar
Raunier, S., Chiavassa, T., Duvernay, F., Borget, F., Aycard, J. P., Dartois, E., & d’Hendecourt, L. 2004, A&A, 416, 165 Google Scholar
Rubin, R. H., Swenson, G. W. Jr, Benson, R. C., Tigelaar, H. L., & Flygare, W. H. 1971, ApJ, 169, L39 10.1086/180810CrossRefGoogle Scholar
Sullivan, J. F., Heusel, H. L., Zunic, W. M., Durig, J. R., Cradock, S., et al. 1994, Spectrochimica Acta Part A: Molecular Spectroscopy, 50, 3 Google Scholar