Hostname: page-component-7d684dbfc8-26pbs Total loading time: 0 Render date: 2023-09-27T02:27:46.665Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

A first model of stable magnetic configuration in stellar radiation zones

Published online by Cambridge University Press:  08 June 2011

Vincent Duez
Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53111 Bonn, Germany, email:,
Jonathan Braithwaite
Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53111 Bonn, Germany, email:,
Stéphane Mathis
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France, email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We test the stability of a magnetic equilibrium configuration using numerical simulations and semi-analytical tools. The tested configuration is, as described by Duez & Mathis (2010), the lowest energy state for a given helicity in a stellar radiation zone. We show using 3D magneto-hydrodynamic (MHD) simulations that the present configuration is stable with respect to all submitted perturbations, that would lead to the development of kink-type instabilities in the case of purely poloidal or toroidal fields, both well known to be unstable. We also discuss, using semi-analytic work, the stabilizing influence of one component on the other and show that the found configuration actually lies in the stability domain predicted by a linear analysis of resonant modes.

Contributed Papers
Copyright © International Astronomical Union 2011


Bonanno, A. & Urpin, V. 2008, A&A, 488, 1Google Scholar
Bonanno, A. & Urpin, V. 2008, A&A, 477, 35Google Scholar
Braithwaite, J. & Nordlund, Å 2006, A&A, 450, 1077Google Scholar
Braithwaite, J. & Spruit, H. 2004, Nature, 431, 819CrossRefGoogle Scholar
Chandrasekhar, S. 1958, Proc. Nat. Acad. Sci., 44, 842CrossRefGoogle Scholar
Duez, V. & Mathis, S. 2010, A&A, 517, A58Google Scholar
Duez, V., Braithwaite, J., & Mathis, S. 2010, ApJL, 524, L34CrossRefGoogle Scholar
Montgomery, D. & Philips, L. 1988, Phys. Rev. A, 38, 2953CrossRefGoogle Scholar
Prendergast, K. H. 1956, ApJ, 123, 498CrossRefGoogle Scholar
Reisenegger, A. 2009, A&A, 499, 557Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365CrossRefGoogle Scholar
Taylor, J. B. 1974, Phys. Rev. Lett., 33, 1139CrossRefGoogle Scholar
Woltjer, L. 1959, ApJ, 130, 405CrossRefGoogle Scholar
Wright, G. A. E. 1973, MNRAS, 162, 339CrossRefGoogle Scholar