Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T12:36:19.818Z Has data issue: false hasContentIssue false

The first 200 kyr of the Solar System: making the planetary material diversity

Published online by Cambridge University Press:  13 January 2020

Francesco C. Pignatale
Affiliation:
Muséum national d’Histoire naturelle, UMR 7590, CP52, 57 rue Cuvier, 75005, Paris, France, email: pignatale@ipgp.fr Institut de Physique du Globe de Paris (IPGP), 1 rue Jussieu, 75005, Paris, France
Sébastien Charnoz
Affiliation:
Institut de Physique du Globe de Paris (IPGP), 1 rue Jussieu, 75005, Paris, France
Marc Chaussidon
Affiliation:
Institut de Physique du Globe de Paris (IPGP), 1 rue Jussieu, 75005, Paris, France
Emmanuel Jacquet
Affiliation:
Muséum national d’Histoire naturelle, UMR 7590, CP52, 57 rue Cuvier, 75005, Paris, France, email: pignatale@ipgp.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chondrites are made of a mixture of solids formed at high and low temperatures. This heterogeneity was thought to be produced by large scale transport processes in the Sun’s isolated accretion disk. However, mounting evidences suggest that refractory inclusions in chondrites were produced together with the disk formation.

We present numerical simulations of the formation and transport of rocky materials during the collapse of the Solar Nebula’s parent cloud and the consequent disk assembling.

We find that the interplay between the cloud collapse, the dynamics of gas and dust and thermal processing of different species in the disk, results in a local mixing of solids with different thermal histories. Our simulations return an heterogeneous distribution of refractory material with higher concentration in the outer disk. This refractory material has a short formation timescales, during the first tens of kyr of the Sun (class 0-I). Our results open new frontiers into the origin of the compositional diversity of chondrites.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Charnoz, S., Pignatale, F.C., Hyodo, R., et al. 2019, A&A, Astronomy and Astrophysics, 627, A50.10.1051/0004-6361/201833216CrossRefGoogle Scholar
Chiang, H.-F., Looney, L. W., & Tobin, J. J. 2012, ApJ , The Astrophysical Journal, 756, 168 CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. 2012, Science, 338, 651 CrossRefGoogle Scholar
Hueso, R., & Guillot, T. 2005, A&A, Astronomy and Astrophysics, 442, 703 CrossRefGoogle Scholar
Kimura, S. S., Kunitomo, M., & Takahashi, S. Z. 2016, MNRAS , Monthly Notices of the Royal Astronomical Society, 461, 2257 CrossRefGoogle Scholar
Mishra, R. K., & Chaussidon, M. 2014, Earth and Planetary Science Letters, 390, 318 CrossRefGoogle Scholar
Pignatale, F. C., Charnoz, S., Chaussidon, M., & Jacquet, E. 2018, ApJL, 867, L23 CrossRefGoogle Scholar
Richter, F. M., Mendybaev, R. A., & Davis, A. M. 2006, Meteoritics and Planetary Science, 41, 83 CrossRefGoogle Scholar
Scott, E. R. D., & Krot, A. N. 2003, Treatise on Geochemistry, 1, 711 Google Scholar
Yang, L., & Ciesla, F. J. 2012, Meteoritics and Planetary Science, 47, 99 CrossRefGoogle Scholar
Warren, P. H. 2011, Geo Cos Acta, 75, 6912 CrossRefGoogle Scholar
Williams, J. P., & Cieza, L. A. 2011, ARAA Annual Review of Astronomy and Astrophysics, 49, 67 CrossRefGoogle Scholar