Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T11:54:53.868Z Has data issue: false hasContentIssue false

Fast downflows in a chromospheric filament

Published online by Cambridge University Press:  24 September 2020

K. Sowmya
Affiliation:
Max-Planck-Institut für Sonnensystemforschung Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany email: krishnamurthy@mps.mpg.de
A. Lagg
Affiliation:
Max-Planck-Institut für Sonnensystemforschung Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany email: krishnamurthy@mps.mpg.de
S. K. Solanki
Affiliation:
Max-Planck-Institut für Sonnensystemforschung Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany email: krishnamurthy@mps.mpg.de School of Space Research, Kyung Hee University, YongIn, Gyeonggi 446–701, Korea
J. S. Castellanos Durán
Affiliation:
Max-Planck-Institut für Sonnensystemforschung Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany email: krishnamurthy@mps.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An active region filament in the upper chromosphere is studied using spectropolarimetric data in He i 10830 Å from the GREGOR telescope. A Milne-Eddingon based inversion of the Unno-Rachkovsky equations is used to retrieve the velocity and the magnetic field vector of the region. The plasma velocity reaches supersonic values closer to the feet of the filament barbs and coexist with a slow velocity component. Such supersonic velocities result from the acceleration of the plasma as it drains from the filament spine through the barbs. The line-of-sight magnetic fields have strengths below 200 G in the filament spine and in the filament barbs where fast downflows are located, their strengths range between 100 - 700 G.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., et al. 2012, AN, 333, 872CrossRefGoogle Scholar
Díaz Baso, C. J., Martínez González, M. J., & Asensio Ramos, A. 2019a, A&A, 625, A128CrossRefGoogle Scholar
Díaz Baso, C. J., Martínez González, M. J., & Asensio Ramos, A. 2019b, A&A, 625, A129CrossRefGoogle Scholar
Joshi, A. D., Srivastava, N., Mathew, S. K., & Martin, S. F. 2013, SoPh, 288, 191CrossRefGoogle Scholar
Kuckein, C., Centeno, R., Martínez Pillet, V., Casini, R., Manso Sainz, R., & Shimizu, T. 2009, A&A, 501, 1113CrossRefGoogle Scholar
Lagg, A., Woch, J., Krupp, N., & Solanki, S. K. 2004, A&A, 414, 1109CrossRefGoogle Scholar
Lagg, A., Ishikawa, R., Merenda, L., Wiegelmann, T., Tsuneta, S., & Solanki, S. K. 2009, ASPC, 415, 327Google Scholar
Sasso, C., Lagg, A., & Solanki, S. K. 2011, A&A, 526, A42CrossRefGoogle Scholar
Sasso, C., Lagg, A., & Solanki, S. K. 2014, A&A, 561, A98CrossRefGoogle Scholar
Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S. K., et al. 2012, Astronomische Nachrichten, 333, 796CrossRefGoogle Scholar