Hostname: page-component-7d684dbfc8-4nnqn Total loading time: 0 Render date: 2023-10-01T15:33:02.762Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

A family of stable configurations to model magnetic fields in stellar radiation zones

Published online by Cambridge University Press:  12 July 2011

Vincent Duez
Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53111 Bonn, Germany, email:,
Jonathan Braithwaite
Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53111 Bonn, Germany, email:,
Stéphane Mathis
Laboratoire AIM, CEA/DSM-CNRS-UniversitéParis Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France, email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We conduct 3D magneto-hydrodynamic (MHD) simulations in order to test the stability of the magnetic equilibrium configuration described by Duez & Mathis (2010). This analytically-derived configuration describes the lowest energy state for a given helicity in a stellar radiation zone. The necessity of taking into account the non force-free property of the large-scale, global field is here emphasized. We then show that this configuration is stable. It therefore provides a useful model to initialize the magnetic topology in upcoming MHD simulations and stellar evolution codes taking into account magneto-rotational transport processes.

Contributed Papers
Copyright © International Astronomical Union 2011


Braithwaite, J. & Nordlund, Å. 2006, A&A, 450, 1077Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature, 431, 819CrossRefGoogle Scholar
Duez, V. & Mathis, S. 2010, A&A, 517, A58Google Scholar
Montgomery, D. & Phillips, L. 1988, Phys. Rev. A, 38, 2953CrossRefGoogle Scholar
Nordlund, Å. & Galsgaard, K. 1995, A 3D MHD code for Parallel Computers, (Astronomical Observatory, Copenhagen University), Scholar
Prendergast, K. H. 1956, ApJ, 123, 498CrossRefGoogle Scholar
Tayler, R. J. 1973, MNRAS, 161, 365CrossRefGoogle Scholar
Taylor, J. B. 1974, Phys. Rev. Lett., 33, 1139CrossRefGoogle Scholar
Wright, G. A. E. 1973, MNRAS, 162, 339CrossRefGoogle Scholar