Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T12:37:38.239Z Has data issue: false hasContentIssue false

Evolution of the Quasar Luminosity Function: Implications for EoR-21cm

Published online by Cambridge University Press:  08 May 2018

Girish Kulkarni
Affiliation:
Institute of Astronomy and Kavli Institute of Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK email: kulkarni@ast.cam.ac.uk
Tirthankar Roy Choudhury
Affiliation:
National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Post Bag 3, Ganeshkhind, Pune 411007, India
Ewald Puchwein
Affiliation:
Institute of Astronomy and Kavli Institute of Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Martin G. Haehnelt
Affiliation:
Institute of Astronomy and Kavli Institute of Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyα and CMB data. We model AGN by extrapolating the observed Mbh–σ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. AGN-dominated reionization histories increase the variance of the 21 cm emission by a factor of up to ten compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments (k ≲ 1 cMpc−1h). This is lower than the sensitivity reached by ongoing experiments by only a factor of about two or less. AGN dominated reionization should be easily detectable by LOFAR (and later HERA and SKA1) at their design sensitivity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Ali, Z. S., et al., 2015, ApJ, 809, 61CrossRefGoogle Scholar
Becker, G. D., Bolton, J. S., Madau, P., Pettini, M., Ryan-Weber, E. V. & Venemans, B. P., 2015, MNRAS, 447, 3402CrossRefGoogle Scholar
Bolton, J. S., Puchwein, E., Sijacki, D., Haehnelt, M. G., Kim, T.-S., Meiksin, A., Regan, J. A. & Viel, M., 2017, MNRAS, 464, 897CrossRefGoogle Scholar
Chardin, J., Puchwein, E. & Haehnelt, M. G., 2017, MNRAS, 465, 3429CrossRefGoogle Scholar
Giallongo, E., et al., 2015, A&A, 578, A83Google Scholar
Haardt, F. & Madau, P., 2012, ApJ, 746, 125CrossRefGoogle Scholar
Hopkins, P. F., Richards, G. T. & Hernquist, L., 2007, ApJ, 654, 731CrossRefGoogle Scholar
Japelj, J., et al., 2017, MNRAS, 468, 389CrossRefGoogle Scholar
Kelly, B. C. & Merloni, A., 2012, Advances in Astronomy, 2012, 970858CrossRefGoogle Scholar
Kulkarni, G. & Loeb, A., 2012, MNRAS, 422, 1306CrossRefGoogle Scholar
Kulkarni, G., Choudhury, T. R., Puchwein, E. & Haehnelt, M. G., 2016, MNRASGoogle Scholar
Kulkarni, G., Choudhury, T. R., Puchwein, E. & Haehnelt, M. G., 2017, MNRAS, 469, 4283CrossRefGoogle Scholar
Madau, P. & Haardt, F., 2015, ApJ, 813, L8CrossRefGoogle Scholar
Mao, J. & Kim, M., 2016, ApJ, 828, 96CrossRefGoogle Scholar
McQuinn, M., Lidz, A., Zahn, O., Dutta, S., Hernquist, L. & Zaldarriaga, M., 2007, MNRAS, 377, 1043CrossRefGoogle Scholar
Merloni, A. & Heinz, S., 2008, MNRAS, 388, 1011Google Scholar
Micheva, G., Iwata, I., Inoue, A. K., Matsuda, Y., Yamada, T. & Hayashino, T., 2017, MNRAS, 465, 316CrossRefGoogle Scholar
Mitra, S., Choudhury, T. R. & Ferrara, A., 2015, MNRAS, 454, L76CrossRefGoogle Scholar