Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-5zgkz Total loading time: 0.164 Render date: 2021-09-23T04:02:32.790Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The emergence of the red sequence at z~2 seen through galaxy clustering in the UKIDSS UDS

Published online by Cambridge University Press:  17 July 2013

William G. Hartley
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD email: will.hartley@nottingham.ac.uk
Omar Almaini
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD email: will.hartley@nottingham.ac.uk
Alice Mortlock
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD email: will.hartley@nottingham.ac.uk
Chris Conselice
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD email: will.hartley@nottingham.ac.uk
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the UKIDSS Ultra-Deep Survey, the deepest degree-scale near-infrared survey to date, to investigate the clustering of star-forming and passive galaxies to z ~ 3.5. Our new measurements include the first determination of the clustering for passive galaxies at z > 2, which we achieve using a cross-correlation technique. We find that passive galaxies are the most strongly clustered, typically hosted by massive dark matter halos with Mhalo > 1013 M irrespective of redshift or stellar mass. Our findings are consistent with models in which a critical halo mass determines the transition from star-forming to passive galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Cen, R. 2011, ApJ, 741, 99CrossRefGoogle Scholar
Croton, D. J., et al. 2006, MNRAS, 365, 11CrossRefGoogle Scholar
Fabian, A. C. 1999, MNRAS, 308, L39CrossRefGoogle Scholar
Hartley, W. G., et al. 2010, MNRAS, 407, 1212CrossRefGoogle Scholar
Landy, S. D. & Szalay, A. S. 1993, ApJ, 412, 64CrossRefGoogle Scholar
Lawrence, A., et al. 2007, MNRAS, 379, 1599CrossRefGoogle Scholar
Mo, H. J. & White, S. D. M. 2002, MNRAS, 336, 112CrossRefGoogle Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Smith, R. E., et al. 2003, MNRAS, 341, 1311CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The emergence of the red sequence at z~2 seen through galaxy clustering in the UKIDSS UDS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The emergence of the red sequence at z~2 seen through galaxy clustering in the UKIDSS UDS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The emergence of the red sequence at z~2 seen through galaxy clustering in the UKIDSS UDS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *