Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T09:25:46.382Z Has data issue: false hasContentIssue false

Early dynamical evolution of young substructured clusters

Published online by Cambridge University Press:  31 March 2017

Julien Dorval
Affiliation:
Observatoire Astronomique, Université de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France email: julien.dorval@astro.unistra.fr email: christian.boily@astro.unistra.fr
Christian Boily
Affiliation:
Observatoire Astronomique, Université de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France email: julien.dorval@astro.unistra.fr email: christian.boily@astro.unistra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ”Hubble expansion” which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Allison, R. J., Goodwin, S. P., Parker, R. J., Portegies Zwart, S. F., de Grijs, R., & Kouwenhoven, M. B. N. 2009, MNRAS, 395, 1449 Google Scholar
André, P., Belloche, A., Motte, F., & Peretto, N. 2007, A&A, 472, 519 Google Scholar
Caputo, D. P., de Vries, N., & Portegies Zwart, S. 2014, MNRAS, 445, 674 Google Scholar
Dorval, J., Boily, C. M., Moraux, E., & Maschberger, T., & Becker, C. 2015, MNRAS, submitted, MN-15-2591-MJGoogle Scholar
Goodwin, S. P., & Whitworth, A. P. 2004, A&A, 413, 929 Google Scholar
Hénon, M. H. 1973, A&A, 24, 229 Google Scholar
Kuhn, M. A., Feigelson, E. D., Getman, K. V., Baddeley, A. J., Broos, P. S., Sills, A., Bate, M. R., Povich, M. S., Luhman, K. L., Busk, H. A., Naylor, T., & King, R. R. 2014, ApJ, 631, 976 Google Scholar
Maschberger, T., Clarke, C. J., Bonnell, I. A., & Kroupa, P. 2010, MNRAS, 404, 1061 Google Scholar
McMillan, S. L. W., Vesperini, E., & Portegies Zwart, S. F. 2007, Apj, 655, L45 Google Scholar