Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-29T13:11:27.088Z Has data issue: false hasContentIssue false

Dynamical vs Supernova Acceleration of OB Stars in the Small Magellanic Cloud

Published online by Cambridge University Press:  29 August 2024

M. S. Oey*
Affiliation:
University of Michigan, Astronomy Department, Ann Arbor, MI, 48109-1107, USA
J. Dorigo Jones
Affiliation:
University of Colorado, Department of Astrophysical and Planetary Sciences, 2000 Colorado Ave., Boulder, CO 80309, USA
G. D. Phillips
Affiliation:
University of Michigan, Astronomy Department, Ann Arbor, MI, 48109-1107, USA
N. Castro
Affiliation:
Leibniz-Institut für Astrophysik, An der Sternwarte, 16 D-14482, Potsdam, Germany
M. M. Dallas
Affiliation:
University of Michigan, Astronomy Department, Ann Arbor, MI, 48109-1107, USA Current address: Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
M. Moe
Affiliation:
University of Arizona, Astronomy Department, Tucson, AZ, 85721, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the RIOTS4 sample of SMC field OB stars to determine the origin of massive runaways in this low-metallicity galaxy using Gaia proper motions, together with stellar masses obtained from RIOTS4 data. These data allow us to estimate the relative contributions of stars accelerated by the dynamical ejection vs binary supernova mechanisms, since dynamical ejection favors faster, more massive runaways, while SN ejection favors the opposite trend. In addition, we use the frequencies of classical OBe stars, high-mass X-ray binaries, and non-compact binaries to discriminate between the mechanisms. Our results show that the dynamical mechanism dominates by a factor of 2 – 3. This also implies a significant contribution from two-step acceleration that occurs when dynamically ejected binaries are followed by SN kicks. We update our published quantitative results from Gaia DR2 proper motions with new data from DR3.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Blaauw, A. 1961, Bull. Astron. Inst. Netherlands, 15, 265 Google Scholar
de Wit, W. J., Testi, L., Palla, F., Vanzi, L., & Zinnecker, H. 2004, A&A, 425, 937 CrossRefGoogle Scholar
Dorigo Jones, J., Oey, M. S., Paggeot, K., Castro, N., & Moe, M. 2020, ApJ, 903, 43 Google Scholar
Hoogerwerf, R., de Bruijne, J. H. J., & de Zeeuw, P. T. 2000, ApJL, 544, L133 CrossRefGoogle Scholar
Kriz, S., & Harmanec, P. 1975, Bulletin of the Astronomical Institutes of Czechoslovakia, 26, 65Google Scholar
Lamb, J. B., Oey, M. S., Segura-Cox, D. M., Graus, A. S., Kiminki, D. C., Golden-Marx, J. B., & Parker, J. W. 2016, ApJ, 817, 113 CrossRefGoogle Scholar
Massey, P. 2002, ApJS, 141, 81 CrossRefGoogle Scholar
Moe, M., & Di Stefano, R. 2017, ApJS, 230, 15 CrossRefGoogle Scholar
Oey, M. S., King, N. L., & Parker, J. W. 2004, AJ, 127, 1632 CrossRefGoogle Scholar
Oey, M. S., Lamb, J. B., Kushner, C. T., Pellegrini, E. W., & Graus, A. S. 2013, ApJ, 768, 66 Google Scholar
Oey, M. S., et al. 2018, ApJL, 867, L8 CrossRefGoogle Scholar
Oh, S., & Kroupa, P. 2016, A&A, 590, A107 CrossRefGoogle Scholar
Pflamm-Altenburg, J., & Kroupa, P. 2010, MNRAS, 404, 1564 Google Scholar
Pols, O. R., Cote, J., Waters, L. B. F. M., & Heise, J. 1991, A&A, 241, 419 Google Scholar
Poveda, A., Ruiz, J., & Allen, C. 1967, Boletin de los Observatorios Tonantzintla y Tacubaya, 4, 86Google Scholar
Renzo, M., et al. 2019, A&A, 624, A66 CrossRefGoogle Scholar
Rivinius, T., Baade, D., Townsend, R. H. D., Carciofi, A. C., & Štefl, S. 2013, A&A, 559, L4 CrossRefGoogle Scholar
Sana, H., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Smith, N., & Tombleson, R. 2015, MNRAS, 447, 598 CrossRefGoogle Scholar
Vargas-Salazar, I., Oey, M. S., Barnes, J. R., Chen, X., Castro, N., Kratter, K. M., & Faerber, T. A. 2020, ApJ, 903, 42 CrossRefGoogle Scholar