Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T02:54:53.980Z Has data issue: false hasContentIssue false

The distribution of carbonaceous molecules and SiN around the S-type AGB star W Aquilae

Published online by Cambridge University Press:  30 November 2022

T. Danilovich
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: taissa.danilovich@kuleuven.be
M. Van de Sande
Affiliation:
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
A. M. S. Richards
Affiliation:
JBCA, Dept Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

Abstract

S-type AGB stars, with C/O ratios close to 1, are expected to have a mixed circumstellar chemistry as they transition from being oxygen-rich stars to carbon-rich stars. Recently, several different carbonaceous molecules, thought to be more characteristic of carbon stars, have been found in the circumstellar envelope of the S-type AGB star W Aql. We have obtained new high spatial resolution ALMA images of some of these molecules, specifically HC3N, SiC2 and SiC, and SiN, which we present here. We report diverse behaviour for these molecules, with SiC2 being seen with a symmetric spatial distribution around the star, SiN and SiC being asymmetrically distributed to the north-east of the star, and HC3N being seen in a broken shell to the south-west. These differing distributions point to complex dynamics in the circumstellar envelope of W Aql.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Senior Postdoctoral Fellow of the Fund for Scientific Research (FWO), Flanders, Belgium.

References

Agundez, M., Cernicharo, J., Quintana-Lacaci, G., et al. 2017, A&A 601, A4 Google Scholar
Cernicharo, J., Gottlieb, C. A., Guelin, M., Thaddeus, P., & Vrtilek, J. M. 1989, ApJL 341, L25 CrossRefGoogle Scholar
Chen, W., Bocquet, R., Wlodarczak, G., & Boucher, D. 1991, International Journal of Infrared and Millimeter Waves 12(9), 987 CrossRefGoogle Scholar
Creswell, R. A., Winnewisser, G., & Gerry, M. C. L. 1977, Journal of Molecular Spectroscopy 65, 420 CrossRefGoogle Scholar
Danilovich, T., Bergman, P., Justtanont, K., et al. 2014, A&A 569, A76 Google Scholar
Danilovich, T., Van de Sande, M., Plane, J. M. C., et al. 2021, A&A 655, A80 Google Scholar
De Beck, E. & Olofsson, H. 2020, A&A 642, A20 Google Scholar
de Zafra, R. L. 1971, ApJ 170, 165 CrossRefGoogle Scholar
Decin, L., Montargès, M., Richards, A. M. S., et al. 2020, Science 369(6510), 1497 CrossRefGoogle Scholar
Gottlieb, C. A., Decin, L., Richards, A. M. S., et al. 2021, A&A ForthcomingGoogle Scholar
Mallinson, P. D. & de Zafra, R. L. 1978, Molecular Physics 36(3), 827 CrossRefGoogle Scholar
Massalkhi, S., Agundez, M., Cernicharo, J., et al. 2018, A&A 611, A29 Google Scholar
Müller, H. S. P., Cernicharo, J., Agndez, M., et al. 2012, Journal of Molecular Spectroscopy 271(1), 50 Google Scholar
Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, Journal of Molecular Structure 742, 215 Google Scholar
Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A 370, L49 Google Scholar
Ramstedt, S., Mohamed, S., Vlemmings, W. H. T., et al. 2017, A&A 605, A126 Google Scholar
Saito, S., Endo, Y., & Hirota, E. 1983, J. Chem. Phys. 78(11), 6447 CrossRefGoogle Scholar
Thorwirth, S., Müller, H. S. P., & Winnewisser, G. 2000, Journal of Molecular Spectroscopy 204, 133 CrossRefGoogle Scholar
Turner, B. E. 1992, ApJL 388, L35 CrossRefGoogle Scholar
Van de Sande, M. & Millar, T. J. 2021, MNRAS Google Scholar
Yamada, K. M. T., Moravec, A., & Winnewisser, G. 1995, Zeitschrift Naturforschung Teil A 50(12), 1179 CrossRefGoogle Scholar