Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-nvdzj Total loading time: 0.225 Render date: 2021-06-14T13:13:54.103Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Distances of Stars by mean of the Phase-lag Method

Published online by Cambridge University Press:  16 July 2018

Sandra Etoka
Affiliation:
Jodrell Bank Centre for Astrophysics, University of Manchester, UK email: Sandra.Etoka@googlemail.com Hamburger Sternwarte, Universität Hamburg, Germany
Dieter Engels
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Germany
Eric Gérard
Affiliation:
GEPI, Observatoire de Paris-Meudon, France
Anita M. S. Richards
Affiliation:
Jodrell Bank Centre for Astrophysics, University of Manchester, UK email: Sandra.Etoka@googlemail.com
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Variable OH/IR stars are Asymptotic Giant Branch (AGB) stars with an optically thick circumstellar envelope that emit strong OH 1612 MHz emission. They are commonly observed throughout the Galaxy but also in the LMC and SMC. Hence, the precise inference of the distances of these stars will ultimately result in better constraints on their mass range in different metallicity environments. Through a multi-year long-term monitoring program at the Nancay Radio telescope (NRT) and a complementary high-sensitivity mapping campaign at the eMERLIN and JVLA to measure precisely the angular diameter of the envelopes, we have been re-exploring distance determination through the phase-lag method for a sample of stars, in order to refine the poorly-constrained distances of some and infer the currently unknown distances of others. We present here an update of this project.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Engels, D. & Bunzel, F. 2015 A&A, 582A, 68Google Scholar
Engels, D., Etoka, S., Gérard, E., & Richards, A. M. S., 2015, ASPC, 497, 473Google Scholar
Engels, D., Gérard, E., & Hallet, N., 2012, IAUS, 287, 254CrossRefGoogle Scholar
Etoka, S., Engels, D., Imai, H. et al. 2015, Proc. Science, (AASKA14), 125Google Scholar
Etoka, S., Engels, D., Gérard, E., & Richards, A. M. S. 2014, evn conf, 59Google Scholar
Etoka, S. & Diamond, P. D., 2010, MNRAS, 406, 2218CrossRefGoogle Scholar
Herman, J. & Habing, H. J., 1985, A&AS, 59, 523Google ScholarPubMed
Orosz, G., Imai, H., Dodson, R. et al., 2017, AJ, 153, 119CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Zheng, X. W. et al., 2009, ApJ, 700, 137CrossRefGoogle Scholar
Schultz, G. V., Sherwood, W. A., & Winnberg, A., 1978, A&A, 63L, 5Google Scholar
van Langevelde, H. J., van der Heiden, R., & van Schooneveld, C., 1990, A&A, 239, 193Google Scholar
Vlemmings, W. H. T. & van Langevelde, H. J., 2007, A&A, 472, 547Google Scholar
Whitelock, P., Feast, M., & Catchpole, R., 1991, MNRAS, 248, 276CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Distances of Stars by mean of the Phase-lag Method
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Distances of Stars by mean of the Phase-lag Method
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Distances of Stars by mean of the Phase-lag Method
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *