Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T02:25:04.706Z Has data issue: false hasContentIssue false

Discrete Absorption Components from 3-D spot models of hot star winds

Published online by Cambridge University Press:  16 August 2023

F. A. Driessen
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D/2401, 3001 Leuven, Belgium National Solar Observatory, 22 Ohi‘a Ku St., Makawao, HI 96768, USA
N. D. Kee
Affiliation:
National Solar Observatory, 22 Ohi‘a Ku St., Makawao, HI 96768, USA

Abstract

The winds of hot, massive stars are variable from processes happening on both large and small spatial scales. A particular case of such wind variability is ‘discrete-absorption components’ (DACs) that manifest themselves as outward moving density features in UV resonance line spectra. Such DACs are believed to be caused by large-scale spiral-shaped density structures in the stellar wind. We consider novel 3-D radiation-hydrodynamic models of rotating hot star winds and study the emergence of co-rotating spiral structures due to a local (pseudo-)magnetic spot on the stellar surface. Subsequently, the hydrodynamic models are used to retrieve DAC spectral signatures in synthetic UV spectra created from a 3-D short-characteristics radiative transfer code.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cantiello, M., Langer, N., Brott, I., et. al (2009), A&A, 499, 27910.1051/0004-6361/200911643CrossRefGoogle Scholar
Cantiello, M., & Braithwaite, J. (2011), A&A, 534, A140 10.1051/0004-6361/201117512CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., Klein, R. I. (1975), ApJ, 195, 15710.1086/153315CrossRefGoogle Scholar
Cranmer, S. R., & Owocki, S. P. (1996), ApJ, 462, 469 10.1086/177166CrossRefGoogle Scholar
David-Uraz, A., Owocki, S. P., Wade, G. A., et al. (2017), MNRAS, 470, 3672 10.1093/mnras/stx1478CrossRefGoogle Scholar
Driessen, F. A., Sundqvist, J. O., & Dagore, A. (2022), A&A, 663, A40 10.1051/0004-6361/202142844CrossRefGoogle Scholar
Gayley, K. G., & Owocki, S. P. (2000), ApJ, 537, 461 10.1086/309002CrossRefGoogle Scholar
Hennicker, L., Puls, J., Kee, N. D., Sundqvist, J. O. (2020), A&A, 633, A16 10.1051/0004-6361/201936584CrossRefGoogle Scholar
Howarth, I. D., & Prinja, R. K. (1989), ApJ, 69, 527 10.1086/191321CrossRefGoogle Scholar
Jermyn, A. S., Cantiello, M. (2020), ApJ, 900, 113 10.3847/1538-4357/ab9e70CrossRefGoogle Scholar
Kaper, L., Henrichs, H. F., Nichols, J. S., et al. (1999), A&A, 344, 231 Google Scholar
Lobel, A., & Blomme, R. (2008), ApJ, 678, 408 10.1086/529129CrossRefGoogle Scholar
Massa, D., & Prinja, R. K. (2015), ApJ, 809, 12 10.1088/0004-637X/809/1/12CrossRefGoogle Scholar
Mullan, D. J. (1986), A&A, 165, 157 Google Scholar
Poniatowski, L. G., Kee, N. D., Sundqvist, J. O., et al. (2022), A&A, in pressGoogle Scholar
Sudnik, N. P., & Henrichs, H. F. (2016), A&A, 594, A16 10.1051/0004-6361/201628529CrossRefGoogle Scholar