Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T20:26:37.853Z Has data issue: false hasContentIssue false

The Discovery of the Most Accelerated Binary Pulsar

Published online by Cambridge University Press:  04 June 2018

Andrew D. Cameron*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany email: acameron@mpifr-bonn.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737–3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey’s flagship discovery, PSR J1757–1854. A 21.5-ms pulsar in a relativistic binary with an orbital period of 4.4 hours and an eccentricity of 0.61, this double neutron star (DNS) system is the most accelerated pulsar binary known, and probes a relativistic parameter space not yet explored by previous pulsar binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Belczynksi, K., Kalogera, V., & Bulik, T., 2002, ApJ, 572, 407Google Scholar
Burgay, M., D’Amico, N., Possenti, A., Manchester, R. N., Lyne, A. G., Joshi, B. C., McLaughlin, M. A., Kramer, M., Sarkissian, J. M., Camilo, F., Kalogera, V., Kim, C., & Lorimer, D. R., 2003, Nature, 426, 531Google Scholar
Cameron, A. D., Champion, D. J., Kramer, M., Bailes, M., Barr, E. D., Bassa, C. G., Bhandari, S., Bhat, N. D. R., Burgay, M., Burke-Spolaor, S., Eatough, R. P., Flynn, C. M. L., Freire, P. C. C., Jameson, A., Johnston, S., Karuppusamy, R., Keith, M. J., Levin, L., Lorimer, D. R., Lyne, A. G., McLaughlin, M. A., Ng. C., Petroff, E., Possenti, A., Ridolfi, A., Stappers, B. W., van Straten, W., Tauris, T. M., Tiburzi, C., & Wex, N., 2018, MNRAS, 457, 57Google Scholar
Damour, T., & Deruelle, N., 1986, Ann. Inst. Henri Poincaré Phys. Théor., 44, 263Google Scholar
Eatough, R. P., Kramer, M., Lyne, A. G., & Keith, M. J., 2013, MNRAS, 431, 292Google Scholar
Freire, P. C., Kramer, M., & Lyne, A. G., 2001, MNRAS, 322, 885Google Scholar
Freire, P. C. C., Wex, N., Esposito-Farèse, G., Verbiest, J. P. W., Bailes, M., Jacoby, B. A., Kramer, M., Stairs, I. H., Antoniadis, J., & Janssen, G. H., 2012, MNRAS, 423, 3328Google Scholar
Johnston, H. M., & Kulkarni, S. R., 1991, ApJ, 368, 504Google Scholar
Keith, M. J., Jameson, A., van Straten, W., Bailes, M., Johnston, S., Kramer, M. Possenti, A., Bates, S. D., Bhat, N. D. R., Burgay, M., Burke-Spolaor, S., D’Amico, N., Levin, L., McMahon, P. L., Milia, S., & Stappers, B. W., 2010, MNRAS, 409, 619Google Scholar
Middleditch, J., & Kristian, J., 1984, ApJ, 279, 157CrossRefGoogle Scholar
Ng, C., Champion, D. J., Bailes, M., Barr, E. D., Bates, S. D., Bhat, N. D. R., Burgay, M., Burke-Spolaor, S., Flynn, C. M. L., Jameson, A., Johnston, S., Keith, M. J., Kramer, M., Levin, L., Petroff, E., Possenti, A., Stappers, B. W., van Straten, W., Tiburzi, C., Eatough, R. P., & Lyne, A. G., 2015, MNRAS, 450, 2922Google Scholar
Lyne, A. G., Burgay, M., Kramer, M., Possenti, A., Manchester, R. N., Camilo, F., McLaughlin, M. A., Lorimer, D. R., D’Amico, N., Joshi, B. C., Reynolds, J., & Freire, P. C. C., 2004, Science, 303, 1153Google Scholar
Shao, L., Sennett, N., Buonanno, A., Kramer, M., & Wex, N. 2017, arXiv, 1704.07561Google Scholar