Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T14:30:30.012Z Has data issue: false hasContentIssue false

Development of the theory of instabilities of differentially rotating plasma with astrophysical applications

Published online by Cambridge University Press:  08 June 2011

J. G. Lominadze*
Affiliation:
Georgian National Astrophysical Observatory, The Ilia State University, Tbilisi 0160Georgia M. Nodia Institute of Geophysics, Tbilisi 0193, Georgia email: contact@gsa.gov.ge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Instabilities of nonuniform flows is a fundamental problem in dynamics of fluids and plasmas. This presentation outlines atypical dynamics of instabilities for unmagnetized and magnetized astrophysical differentially rotating flows, including, our efforts in the development of general theory of magneto rotation instability (MRI) that takes into account plasma compressibility, pressure anisotropy, dissipative and kinetic effects. Presented analysis of instability (transient growth) processes in unmagnetized/hydrodynamic astrophysical disks is based on the breakthrough of the hydrodynamic community in the 1990s in the understanding of shear flow non-normality induced dynamics. This analysis strongly suggests that the so-called bypass concept of turbulence, which has been developed by the hydrodynamic community for spectrally stable shear flows, can also be applied to Keplerian disks. It is also concluded that the vertical stratification of the disks is an important ingredient of dynamical processes resulting onset of turbulence.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Afshordi, N., Mukhopadhyay, B., & Narayan, R. 2005, ApJ, 629, 373Google Scholar
Baggett, J. S., Driscoll, T. A., & Trefethen, L. N. 1995, Physics of Fluids, 7, 833Google Scholar
Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1992, ApJ, 400, 610Google Scholar
Balbus, S. A., Hawley, J. F. & Stone, J. M. 1996, ApJ, 467, 76Google Scholar
Balbus, S. A. & Hawley, J. F. 2006, Review of Modern Physics, 70, 1CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 2006, ApJ, 652, 1020CrossRefGoogle Scholar
Barranco, J. A., & Marcus, P. S. 2005, ApJ, 623, 1157Google Scholar
Blaes, O. M. & Socrates, A. 2001, ApJ, 553, 987Google Scholar
Broberg, L. & Brosa, U. 1988, Z. Naturforschung, 43a, 697Google Scholar
Bodo, G., Chagelishvili, G., Murante, , et al. . 2005, A&A, 437, 9Google Scholar
Brandenburg, A. & Dintrans, B. 2006, A&A, 450, 437Google Scholar
Butler, K. M. & Farrell, B. F. 1992, Phys. Fluids, 4, 1637Google Scholar
Chagelishvili, G. D., Chanishvili, R. G., Hristov, T. S., & Lominadze, J. G. 2002, Sov. Phys. JETP, 94, 434Google Scholar
Chagelishvili, G. D., Zahn, J.-P., Tevzadze, A. G., & Lominadze, J. G. 2003, A&A, 402, 401Google Scholar
Chandrasekhar, S., Kaufman, A. N., & Watson, K. M. 1958, Proc. R. Soc. London A, 245, 435Google Scholar
Chapman, S. J. 2002, J. Fluid Mech., 451, 35Google Scholar
Chandrasekhar, S. 1960, Proc. Nat. Acad. Sci. U.S.A. 46, 253Google Scholar
Farrell, B. F. & Ioanou, P. J. 1993, Phys. Fluids A, 5, 1390Google Scholar
Ferriere, K. 2006, Space Sci. Rev., 122, 247Google Scholar
Gebhardt, T. & Grossmann, S. 1994, Phys. Rev. E, 50, 3705CrossRefGoogle Scholar
Grossmann, S. 2000, Rev. Mod. Phys., 72, 603CrossRefGoogle Scholar
Gustavsson, L. H. 1991, J. Fluid Mech., 224, 241Google Scholar
Hawley, J. F. & Balbus, S. A. 1991, ApJ, 376, 223CrossRefGoogle Scholar
Hawley, J. F. & Balbus, S. A. 1992, ApJ, 400, 595CrossRefGoogle Scholar
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742CrossRefGoogle Scholar
Quataert, E., Dorland, W., & Hammett, G. W. 2002, ApJ, 577, 524Google Scholar
Henningson, D. S. & Reddy, S. C. 1994, Phys. Fluids, 6, 1396Google Scholar
Ioannou, P. J. & Kakouris, A. 2001, ApJ, 550, 931Google Scholar
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006, Nature, 444, 343Google Scholar
Johnson, B. M. & Gammie, C. F. 2005, ApJ, 626, 978CrossRefGoogle Scholar
Kim, W. T. & Ostriker, E. C. 2000, ApJ, 540, 372Google Scholar
Klahr, H. & Bodenheimer, P. 2003, ApJ, 582, 869Google Scholar
Klahr, H. 2004, ApJ, 606, 1070CrossRefGoogle Scholar
Kitsenko, A. B. & Stepanov, K. N. 1960, Sov. Phys. JETP, 432, 31Google Scholar
Krolik, J. H. & Zweibel, E. G. 2006, ApJ, 644, 651Google Scholar
Lindgren, T., Larsson, J. & Stenflo, L. 1958, Phys. Plasmas, 24, 1177CrossRefGoogle Scholar
Lominadze, J. G., Chagelishvili, G. D., & Chanishvili, R. G. 1988, Sov. Astr. Lett., 14, 364Google Scholar
Longaretti, P.-Y. 2002, ApJ, 576, 587Google Scholar
Mikhailovskii, A. B. 1975, in Leontovich, M. A. (ed) Reviews of Plasma Physics, 6, p. 77Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2007, Phys. Plasmas, 14, 112108Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2007a, Phys. Lett. A, 372, 49CrossRefGoogle Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2007b, Phys. Plasmas, 14, 082302Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2008, Sov. Phys. JETP, 106, 154Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2008a, Sov. Phys. JETP, 106, 371Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2008b, Plasma Phy. Control. Fusion, 50, 085012Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2008c, Phys. Plasmas, 15, 052109Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2008d, Phys. Plasmas, 15, 014504Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., et al. . 2008e, Plasma Phys. Rep., 34, 052109CrossRefGoogle Scholar
Mukhopadhyay, B., Afshordi, N., & Narayan, R. 2005, ApJ, 629, 383Google Scholar
Parker, E. N. 1958, Phys. Rev., 109, 1874Google Scholar
Rayleigh, Lord 1880, Scientific Papers (Cambridge Univ. press), 1, 474Google Scholar
Reddy, S. C., Schmid, P. J., & Hennigson, D. S. 1993, SIAM J. Appl. Math., 53, 15Google Scholar
Reddy, S. C. & Henningson, D. S. 1993, J. Fluid Mech., 252, 209Google Scholar
Reshotko, E. 2001, Phys. Fluids, 13, 1067Google Scholar
Richard, D. & Zahn, J.-P. 1999, A&A, 347, 734Google Scholar
Richard, D. 2001, Ph.D. Thesis, Universite Paris 7Google Scholar
Rudakov, L. I. & Sagdeev, R. Z. 1958, Physics and the Problem of Controlled Thermonuclear Reactions, (New York: Pergamon), 3, P. 321Google Scholar
Sharma, P., Hammett, G. W., & Quataert, E. 2003, ApJ, 596, 1121Google Scholar
Sharma, P., Hammett, G. W., & Quataert, E. 2006, ApJ, 637, 952Google Scholar
Shen, Y., Stone, J. M., & Gardiner, T. A. 2006, ApJ, 653, 513CrossRefGoogle Scholar
Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, ApJ, 463, 656Google Scholar
Shukla, N. & Shukla, P. K. 2007, Phys. Lett. A, 362, 221Google Scholar
Tagger, M. 2001, A&A, 380, 750Google Scholar
Tevzadze, A. G., Chagelishvili, G. D., Zahn, J.-P., Chanishvili, R. G., & Lominadze, J. G. 2003, A&A, 407, 779Google Scholar
Tevzadze, A. G., Chagelishvili, G. D., & Zahn, J.-P. 2008, A&A, 478, 9Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C., & Discoll, T. A. 1993, Science, 261, 578CrossRefGoogle Scholar
Vedenov, A. A. & Sagdeev, R. Z. 1958, Physics and the Problem of Controlled Thermonuclear Reactions, (New York: Pergamon), 3, P. 332Google Scholar
Velikhov, E. P. 1959, Sov. Phys. JETP 9, 995Google Scholar
Umurhan, O. M. 2006, MNRAS, 368, 85Google Scholar
Umurhan, O. M. & Regev, O. 2004, A&A, 427, 855Google Scholar
Umurhan, O. M. & Shaviv, G. 2005, A&A, 432, 31Google Scholar
Urpin, V. & Rudiger, G 2005, A&A, 437, 23Google Scholar
Wardle, M. 1999, A&A, 307, 849Google Scholar
Weibel, E. S. 1959, Phys. Rev. Lett., 2, 83Google Scholar
Yecko, P. A. 2004, A&A, 425, 385Google Scholar