Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-15T20:39:41.887Z Has data issue: false hasContentIssue false

Deep eROSITA observations of the magnificent seven isolated neutron stars

Published online by Cambridge University Press:  27 February 2023

Adriana Mancini Pires
Affiliation:
Leibniz Institute for Astrophysics Potsdam (AIP) An der Sternwarte 16, 14482, Potsdam, Germany email: apires@aip.de
Axel Schwope
Affiliation:
Leibniz Institute for Astrophysics Potsdam (AIP) An der Sternwarte 16, 14482, Potsdam, Germany email: apires@aip.de
Jan Kurpas
Affiliation:
Leibniz Institute for Astrophysics Potsdam (AIP) An der Sternwarte 16, 14482, Potsdam, Germany email: apires@aip.de

Abstract

We report the initial results of deep eROSITA monitoring of the magnificent seven isolated neutron stars (INSs). Thanks to a combination of high count statistics and good energy resolution, the eROSITA datasets unveil the increasingly complex energy distribution of these presumably simple thermal emitters. For three targets, we report the detection of multiple (in some cases, phase-dependent) spectral absorption features and deviations from the dominant thermal continuum. Unexpected long-term changes of spectral state and timing behaviour have additionally been observed for two INSs. The results pose challenging theoretical questions on the nature of the variations and absorption features and ultimately impact the modeling of the atmosphere and cooling of highly magnetised neutron stars.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghese, A. et al. (2015). ApJ 807, L20.CrossRefGoogle Scholar
Haberl, F. (2007). Ap&SS 308, 181.CrossRefGoogle Scholar
Haberl, F. et al. (2006). A&A 451, L17.CrossRefGoogle Scholar
Hambaryan, V. et al. (2009). A&A 497, L9.CrossRefGoogle Scholar
Kaplan, D. L. and van Kerkwijk, M. H. (2009). ApJ 692, L62.CrossRefGoogle Scholar
Kaplan, D. L. et al. (2011). ApJ 736, 117.Google Scholar
Pires, A. M. et al. (2014). A&A 563, A50.CrossRefGoogle Scholar
Pires, A. M. et al. (2019). A&A 623, A73.CrossRefGoogle Scholar
Potekhin, A. Yu (2014). Physics Uspekhi 57, 735.CrossRefGoogle Scholar
Predehl, P. et al. (2021). A&A 647, A1.CrossRefGoogle Scholar
Schwope, A. D. et al. (2009). A&A 499, 267.Google Scholar
Schwope, A. D. et al. (2021). arXiv e-prints, arXiv:2106.14533.Google Scholar
Turolla, R. (2009). ASSL. Ed. by W. Becker. Vol. 357. ASSL, 141.Google Scholar
van Kerkwijk, M. H. et al. (2007). ApJ 659, L149.CrossRefGoogle Scholar
Zane, S. et al. (2005). ApJ 627, 397.CrossRefGoogle Scholar