Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-dr4jh Total loading time: 0.308 Render date: 2021-06-20T11:02:14.362Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Common Origin for Organics in Meteorites and Comets: Was It Interstellar?

Published online by Cambridge University Press:  21 December 2011

Conel M. O'D. Alexander
Affiliation:
DTM, Carnegie Institution of Washington, 5241 Broad Branch, Washington DC 20015, USA email: alexander@dtm.ciw.edu
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

The insoluble organic material preserved in primitive chondritic meteorites shares many similarities with the refractory organic material in interplanetary dust particles and comets, suggesting that there is a genetic link between the organic matter in objects that formed between ~3 AU and ~30 AU from the Sun. These similarities include large D and 15N enrichments in bulk and even more extreme enrichments in isotopic hotspots. The enrichments attest to formation in very cold environments, either in the outer Solar System or the protosolar molecular cloud. There are many properties of this organic material that are consistent with an interstellar origin, but a Solar System origin cannot be ruled out. Similar organic material is presumably an important component of most protoplanetary disks, and heating or sputtering of this material would be a source of PAHs in disks. The soluble organic matter was more heavily effected by processes on the chondritic parent bodies than the insoluble material. Amino acids, for instance, probably formed by reaction of ketones and aldehydes with NH3 and HCN. The accretion of the relatively volatile NH3 and HCN, presumably in ices, strengthens the chondrite-comet connection. However, unlike most comets the water in chondrites, when it was accreted, had D/H ratios that were similar to or depleted relative to Earth.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aléon, J., Robert, F., Chaussidon, M., & Marty, B. 2003, Geochim. Cosmochim. Acta, 67, 3773CrossRefGoogle Scholar
Alexander, C. M. O'D. 2009, in: Boulanger, F., Joblin, C., Jones, A., & Madden, S. (eds.) Interstellar dust from astronomical observations to fundamental studies, (European Astronom. Soc. Publ. Series), p. 75Google Scholar
Alexander, C. M. O'D., Boss, A. P., Keller, L. D., Nuth, I. J. A., & Weinberger, A. 2007a, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.) Protostars and Planets V, (Tucson: University of Arizona Press), p. 801Google Scholar
Alexander, C. M. O'D., Cody, G. D., Fogel, M., & Yabuta, H. 2008, in: Kwok, S., & Sandford, S. A. (eds.) Organic Matter in Space (Hong Kong: Cambridge University Press), p. 293Google Scholar
Alexander, C. M. O'D., Fogel, M., Yabuta, H., & Cody, G. D. 2007b, Geochim. Cosmochim. Acta, 71, 4380CrossRefGoogle Scholar
Alexander, C. M. O'D., Howard, K. T., Bowden, R., Fogel, M., & Bonal, L. 2011, Lunar Planet. Sci., 42, #1869Google Scholar
Alexander, C. M. O'D., Newsome, S. N., Fogel, M. L., Nittler, L. R., Busemann, H., & Cody, G. D. 2010, Geochim. Cosmochim. Acta, 74, 4417CrossRefGoogle Scholar
Berger, E. L., Zega, T. J., Keller, L. P., & Lauretta, D. S. 2011, Geochim. Cosmochim. Acta, 75, 3501CrossRefGoogle Scholar
Bonal, L., Alexander, C. M. O'D., Huss, G. R., & Nagashima, K. 2011, Lunar Planet. Sci., 42, #1287Google Scholar
Botta, O. & Bada, J. L. 2002, Surveys in Geophysics, 23, 411CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., Gladman, B., & Kiel, K. 2002, in Asteroids III, eds. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (Tuscon: University of Arizona Press), 653Google Scholar
Busemann, H., et al. 2009, Earth Planet. Sci. Lett., 288, 44CrossRefGoogle Scholar
Busemann, H., Young, A. F., Alexander, C. M. O'D., Hoppe, P., Mukhopadhyay, S., & Nittler, L. R. 2006, Science, 314, 727CrossRefGoogle Scholar
Cody, G. D. & Alexander, C. M. O'D. 2005, Geochim. Cosmochim. Acta, 69, 1085CrossRefGoogle Scholar
Cody, G. D., Alexander, C. M. O'D., Kilcoyne, A. L. D., & Yabuta, H. 2008, in: Kwok, S., & Sandford, S. A. (eds.) Organic matter in space, (Hong Kong: Cambridge University Press), p. 277Google Scholar
Cody, G. D., Alexander, C. M. O'D., & Tera, F. 2002, Geochim. Cosmochim. Acta, 66, 1851CrossRefGoogle Scholar
Cody, G. D., Heying, E., Alexander, C. M. O'D., Nittler, L. R., Kilcoyne, A. L. D., Sandford, S. A., & Stroud, R. M. 2011, Proc. Nat. Acad. Sci., 108CrossRefGoogle Scholar
Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., & Garrel, L., 2001, Nature, 414, 879CrossRefGoogle Scholar
Dartois, E., Muñoz Caro, G. M., Deboffle, D., Montagnac, G., & d'Hendecourt, L. 2005, Astron. Astrophys., 432, 895CrossRefGoogle Scholar
De Gregorio, B. T., Stroud, R. M., Nittler, L. R., Alexander, C. M. O'D., Kilcoyne, A. L. D., & Zega, T. J. 2010, Geochim. Cosmochim. Acta, 74, 4454CrossRefGoogle Scholar
Deloule, E., Robert, F., & Doukhan, J. C. 1998, Geochim. Cosmochim. Acta, 62, 3367CrossRefGoogle Scholar
Dermott, S. F., Durda, D. D., Grogan, K., & Kehoe, T. J. J. 2002, in: Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.) Asteroids III, (Tucson: University of Arizona Press), p. 423Google Scholar
Duprat, J., et al. 2010, Science, 328, 742CrossRefGoogle Scholar
Ehrenfreund, P., Glavin, D. P., Botta, O., Cooper, G., & Bada, J. L. 2001, Proc. Nat. Acad. Sci., 98, 2138CrossRefGoogle Scholar
Ehrenfreund, P., Robert, F., d'Hendencourt, L., & Behar, F. 1991, Astron. Astrophys., 252, 712Google Scholar
Engel, M. H., Macko, S. A., & Silfer, J. A. 1990, Nature, 348, 47CrossRefGoogle Scholar
Ferrante, R. F., Moore, M. H., Nuth, J. A., & Smith, T. 2000, Icarus, 145, 297CrossRefGoogle Scholar
Floss, C., Stadermann, F. J., Bradley, J. P., Dai, Z. R., Bajt, S., Graham, G. A., & Lea, A. S. 2006, Geochim. Cosmochim. Acta, 70, 2371CrossRefGoogle Scholar
Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., & Jacobsen, C. 2003, Geochim. Cosmochim. Acta, 67, 4791CrossRefGoogle Scholar
Gardinier, A., Derenne, S., Robert, F., Behar, F., Largeau, C., & Maquet, J. 2000, Earth Planet. Sci. Lett., 184, 9CrossRefGoogle Scholar
Garvie, L. A. J., Baumgardener, G., & Buseck, P. R. 2008, Meteor. Planet. Sci., 43, 899CrossRefGoogle Scholar
Garvie, L. A. J. & Buseck, P. R. 2004, Earth Planet. Sci. Lett., 224, 431CrossRefGoogle Scholar
Gilmour, I. 2003, in: Davis, A. M. (ed.) Meteorites, Comets and Planets, (Oxford: Elsevier-Pergamon), p. 269Google Scholar
Glavin, D. P., Callahan, M. P., Dworkin, J. P., & Elsila, J. E. 2010, Meteor. Planet. Sci., 45, 1948CrossRefGoogle Scholar
Gourier, D., Robert, F., Delpoux, O., Binet, L., Vezin, H., Moissette, A., & Derenne, S. 2008, Geochim. Cosmochim. Acta, 72, 1914CrossRefGoogle Scholar
Gradie, J. C., Chapman, C. R., & Tedesco, E. F. 1989, in: Binzel, R. P., Gehrels, T., & Matthews, M. S. (eds.) Asteroids II, (Tucson: Univ. Arizona Press), p. 316Google Scholar
Grossman, J. N., Alexander, C. M. O'D., Wang, J., & Brearley, A. J. 2002, Meteor. Planet. Sci., 37, 49CrossRefGoogle Scholar
Hayatsu, R. & Anders, E. 1981, in: Boschke, F. L. (ed.) Cosmo- and Geochemistry (Berlin: Springer-Verlag), p. 1Google Scholar
Hayatsu, R., Matsuoka, S., Scott, R. G., Studier, M. H., & Anders, E. 1977, Geochim. Cosmochim. Acta, 41, 1325CrossRefGoogle Scholar
Herd, C. D. K., et al. 2011, Science, 332, 1304CrossRefGoogle Scholar
Huang, Y., Alexandre, M. R., & Wang, Y. 2007, Earth Planet. Sci. Lett., 259, 517CrossRefGoogle Scholar
Huang, Y., Wang, Y., Alexandre, M. R., Lee, T., Rose-Petruck, C., Fuller, M., & Pizzarello, S. 2005, Geochim. Cosmochim. Acta, 69, 1073CrossRefGoogle Scholar
Jones, A. P., Duley, W. W., & Williams, D. A. 1990, QJRAS, 31, 567Google Scholar
Kawasaki, T., Hatase, K., Fujii, Y., Jo, K., Soai, K., & Pizzarello, S. 2006, Geochim. Cosmochim. Acta, 70, 5395CrossRefGoogle Scholar
Kebukawa, Y., Alexander, C. M. O'D., & Cody, G. D. 2011, Geochim. Cosmochim. Acta, 75, 3530CrossRefGoogle Scholar
Keller, L. P., Messenger, S., Flynn, G. J., Clemett, S., Wirick, S., & Jacobsen, C. 2004, Geochim. Cosmochim. Acta, 68, 2577CrossRefGoogle Scholar
Kissel, J. & Krueger, F. R. 1987, Nature, 326, 755CrossRefGoogle Scholar
Kress, M. E. & Tielens, A. G. G. M. 2001, Meteor. Planet. Sci., 36, 75CrossRefGoogle Scholar
Krot, A. N., Keil, K., Goodrich, C. A., Scott, E. R. D., & Weisberg, M. K. 2003, in: Davis, A. M. (ed.) Meteorites, comets and planets, (Oxford: Elsevier-Pergamon), p. 83Google Scholar
Lis, D. C., Wootten, A., Gerin, M., & Roueff, E. 2010, ApJ, 710, L49CrossRefGoogle Scholar
Lisse, C. M., Kraemer, K. E., Nuth, J. A., Li, A., & Joswiak, D. 2007, Icarus, 191, 223CrossRefGoogle Scholar
Lodders, K. 2003, ApJ, 591, 1220CrossRefGoogle Scholar
Lyons, J. R. & Young, E. D. 2005, Nature, 435, 317CrossRefGoogle Scholar
Martins, Z., Alexander, C. M. O'D., Orzechowska, G. E., Fogel, M. L., & Ehrenfreund, P. 2007, Meteor. Planet. Sci., 42, 2125CrossRefGoogle Scholar
Martins, Z. & Sephton, M. 2009, in: Hughes, A. B. (ed.) Origins and synthesis of amino acids, (Weinheim: Wiley-VCH), p. 3Google Scholar
Matrajt, G., et al. 2008, Meteor. Planet. Sci., 43, 315CrossRefGoogle Scholar
McKeegan, K. D., et al. 2006, Science, 314, 1724CrossRefGoogle Scholar
Messenger, S. 2000, Nature, 404, 968CrossRefGoogle Scholar
Morbidelli, A., Bottke, W. F. Jr., Froeschle, C., & Michel, P. 2002, in: Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.) Asteroids III, (Tucson: University of Arizona Press), p. 409Google Scholar
Mumma, M. J. & Charnley, S. B. 2011, ARAA, 49, 471CrossRefGoogle Scholar
Muñoz Caro, G. M., et al. 2006, Astron. Astrophys., 459, 147CrossRefGoogle Scholar
Nakamura, K., Zolensky, M. E., Tomita, S., Nakashima, S., & Tomeoka, K. 2002, Int. J. Astrobiol., 1, 179CrossRefGoogle Scholar
Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J., & Zolensky, M. E. 2006, Science, 314, 1439CrossRefGoogle Scholar
Naraoka, H., Shimoyama, A., Komiya, M., Yamamoto, H., & Harada, K. 1988, Chem. Lett., 17, 831CrossRefGoogle Scholar
Nesvorny, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlicky, D., & Gounelle, M. 2010, ApJ, 713, 816CrossRefGoogle Scholar
Nittler, L. R. 2003, Earth Planet. Sci. Lett., 209, 259CrossRefGoogle Scholar
Nuth, J. A., Hill, H. G. M., & Kletetschka, G. 2000, Nature, 406, 275CrossRefGoogle Scholar
Pendleton, Y. J. & Allamandola, L. J. 2002, ApJS, 138, 75CrossRefGoogle Scholar
Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., & Sellgren, K. 1994, ApJ, 437, 683CrossRefGoogle Scholar
Pizzarello, S., Cooper, G. W., & Flynn, G. J. 2006, in: Lauretta, D. S., & McSween, H. Y. Jr. (eds.) Meteorites and the Early Solar System II, (Tucson: University of Arizona Press), p. 625Google Scholar
Pizzarello, S. & Holmes, W. 2009, Geochim. Cosmochim. Acta, 73, 2150CrossRefGoogle Scholar
Pizzarello, S., Huang, Y. & Alexandre, M. R. 2008, Proc. Nat. Acad. Sci. 105, 3700CrossRefGoogle Scholar
Pizzarello, S. & Huang, Y. 2005, Geochim. Cosmochim. Acta, 69, 599CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., & Alexandre, M. R. 2008, Proc. Nat. Acad. Sci., 105, 3700CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., & Fuller, M. 2004, Geochim. Cosmochim. Acta, 68, 4963CrossRefGoogle Scholar
Remusat, L., Derenne, S., Robert, F., & Knicker, H. 2005, Geochim. Cosmochim. Acta, 69, 3919CrossRefGoogle Scholar
Remusat, L., Guan, Y., Wang, Y., & Eiler, J. M. 2010, ApJ, 713, 1048CrossRefGoogle Scholar
Remusat, L., Palhol, F., Robert, F., Derenne, S., & France-Lanord, C. 2006, Earth Planet. Sci. Lett., 243, 15CrossRefGoogle Scholar
Remusat, L., et al. 2009, ApJ, 698, 2087CrossRefGoogle Scholar
Robert, F. 2001, Science, 293, 1056CrossRefGoogle Scholar
Robert, F. 2002, Planet. Space Sci., 50, 1227CrossRefGoogle Scholar
Robert, F. & Epstein, S. 1982, Geochim. Cosmochim. Acta, 46, 81CrossRefGoogle Scholar
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., Sellgren, K., Tapia, M., & Pendleton, Y. J. 1991, ApJ, 371, 607CrossRefGoogle Scholar
Schmitt-Kopplin, P., et al. 2010, Proc. Nat. Acad. Sci., 107, 2763CrossRefGoogle Scholar
Scott, E. R. D. & Krot, A. N. 2003, in: Davis, A. M. (ed.) Meteorites, Comets and Planets, (Oxford: Elsevier-Pergamon), p. 143Google Scholar
Sephton, M. A. 2002, Nat. Prod. Rep., 19, 292CrossRefGoogle Scholar
Sephton, M. A. 2005, Phil. Trans. Roy. Soc. A, 363, 2729CrossRefGoogle Scholar
Sephton, M. A. & Gilmour, I. 2001, Planet. Space Sci., 49, 465CrossRefGoogle Scholar
Sephton, M. A., Love, G. D., Meredith, W., Snape, C. E., Sun, C.-G., & Watson, J. S. 2005, Planet. Space Sci., 53, 1280CrossRefGoogle Scholar
Sephton, M. A., Pillinger, C. T., & Gilmour, I. 1999, Planet. Space Sci., 47, 181CrossRefGoogle Scholar
Serra Díaz-Cano, L. & Jones, A. P. 2008, Astron. Astrophys., 492, 127CrossRefGoogle Scholar
Shinnaka, Y., Kawakita, H., Kobayashi, H., Jehin, E. l., Manfroid, J., Hutsemékers, D., & Arpigny, C. 2011, ApJ, 729, 81CrossRefGoogle Scholar
Wang, Y., Huang, Y., Alexander, C. M. O'D., Fogel, M., & Cody, G. 2005, Geochim. Cosmochim. Acta, 69, 3711CrossRefGoogle Scholar
Wang, Y., Kebukawa, Y., Cody, G. D., & Alexander, C. M. O'D. 2011, Lunar Planet. Sci., 42, #2380Google Scholar
Weisberg, M. K., McCoy, T. J., & Krot, A. N. 2006, in: Lauretta, D. S., & McSween, H. Y. Jr. (ed.) Meteorites and the Early Solar System II, (Tucson: University of Arizona Press), 19Google Scholar
Yang, J. & Epstein, S. 1984, Nature, 311, 544CrossRefGoogle Scholar
Yuen, G., Blair, N., Des Marais, D. J., & Chang, S. 1984, Nature, 307, 252CrossRefGoogle Scholar
Yurimoto, H. & Kuramoto, K. 2004, Science, 305, 1763CrossRefGoogle Scholar
Zubko, V., Dwek, E., & Arendt, R. G. 2004, ApJS, 152, 211CrossRefGoogle Scholar
You have Access
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Common Origin for Organics in Meteorites and Comets: Was It Interstellar?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Common Origin for Organics in Meteorites and Comets: Was It Interstellar?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Common Origin for Organics in Meteorites and Comets: Was It Interstellar?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *