Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T00:58:28.133Z Has data issue: false hasContentIssue false

Clumped stellar winds in supergiant high-mass X-ray binaries

Published online by Cambridge University Press:  21 February 2013

L. M. Oskinova
Affiliation:
Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany, email: lida@astro.physik.uni-potsdam.de
A. Feldmeier
Affiliation:
Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany, email: lida@astro.physik.uni-potsdam.de
P. Kretschmar
Affiliation:
European Space Astronomy Centre (ESA/ESAC), Science Operations Department, Villanueva de la Cañada, Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The clumping of massive star winds is an established paradigm, which is confirmed by multiple lines of evidence and is supported by stellar wind theory. We use the results from time-dependent hydrodynamical models of the instability in the line-driven wind of a massive supergiant star to derive the time-dependent accretion rate on to a compact object in the Bondi-Hoyle-Lyttleton approximation. The strong density and velocity fluctuations in the wind result in strong variability of the synthetic X-ray light curves. Photoionization of inhomogeneous winds is different from the photoinization of smooth winds. The degree of ionization is affected by the wind clumping. The wind clumping must also be taken into account when comparing the observed and model spectra of the photoionized stellar wind.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157CrossRefGoogle Scholar
Feldmeier, A., et al. 1997a, A&A, 320, 899Google Scholar
Feldmeier, A., Puls, J., & Pauldrach, A. W. A. 1997b, A&A, 322, 878Google Scholar
Feldmeier, A., Oskinova, L., & Hamann, W.-R. 2003, A&A, 403, 217Google Scholar
Iben, I. Jr, Tutukov, A. V., & Yungelson, L. R. 1995, ApJS, 100, 217CrossRefGoogle Scholar
Lucy, L. B. & Solomon, P. M. 1970, ApJ, 159, 879CrossRefGoogle Scholar
Lucy, L. B. & White, R. L. 1980, ApJ, 241, 300CrossRefGoogle Scholar
Oskinova, L. M., Feldmeier, A., & Hamann, W.-R. 2004, A&A, 422, 675Google Scholar
Oskinova, L. M., Feldmeier, A., Hamann, W. 2006, MNRAS, 372, 313CrossRefGoogle Scholar
Oskinova, L. M., Hamann, W., & Feldmeier, A. 2007, A&A, 476, 1331Google Scholar
Oskinova, L. M., Feldmeier, A., & Kretschmar, P. 2012, MNRAS, 421, 2820Google Scholar
Stewart, G. C. & Fabian, A. C. 1981, MNRAS, 197, 713Google Scholar
Šurlan, B.et al. 2012, A&A, 541, 37Google Scholar