Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T03:21:41.464Z Has data issue: false hasContentIssue false

Asteroid Evolution: Role of Geotechnical Properties

Published online by Cambridge University Press:  01 March 2016

Paul Sánchez*
Affiliation:
Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO 80309-0431 email: diego.sanchez-lana@colorado.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a brief review and latest results of the work that has been carried out by the Planetary Science community in order to understand the role of the geotechnical properties of granular asteroids (commonly known as “rubble-pile” asteroids) in their formation, evolution and possible disruption. As such, we will touch in aspects of the theoretical and numerical tools that have been used with this objective and how the obtained results compare to the observed asteroids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Affes, R., Topin, V., Delenne, J. Y., Monerie, Y. & Radjaï, F., 2011. Bonelli, S., Dascalu, C. & Nicot, F., editors, Advances in Bifurcation and Degradation in Geomaterials, volume 11 of Springer Series in Geomechanics and Geoengineering. Springer Netherlands, 249254.Google Scholar
Alder, B. J. & Wainwright, T. E., 1959. The Journal of Chemical Physics, 31, 459.Google Scholar
Allen, M. P. & Tildesley, D. J., 1989. Computer Simulation of Liquids. Oxford science publications. Oxford University Press, USA, New York.Google Scholar
Ballouz, R. L., Richardson, D., Michel, P., Schwartz, S. & Yu, Y., 2015. Planetary and Space Science, 107, 29. {VIII} Workshop on Catastrophic Disruption in the Solar System.Google Scholar
Cundall, P. & Strack, D., 1979. Geotechnique, 29, 47.Google Scholar
Hamaker, H., 1937. Physica, 4, 1058.Google Scholar
Hirabayashi, M., 2014. Icarus, 236, 178.Google Scholar
Hirabayashi, M., Sánchez, D. P. & Scheeres, D. J., 2015. The Astrophysical Journal, 808, 63.CrossRefGoogle Scholar
Hirabayashi, M. & Scheeres, D. J., 2014. The Astrophysical Journal, 780, 160.Google Scholar
Hirabayashi, M. & Scheeres, D. J., 2015. The Astrophysical Journal Letters, 798, L8.Google Scholar
Holsapple, K. A., 2001. Icarus, 154, 432.Google Scholar
Holsapple, K. A., 2004. Icarus, 172, 272.Google Scholar
Holsapple, K. A., 2007. Icarus, 187, 500.Google Scholar
Holsapple, K. A., 2010. Icarus, 205, 430.Google Scholar
Jacobson, S. A. & Scheeres, D. J., 2011. The Astrophysical Journal Letters, 736, L19.Google Scholar
Jaeger, H. M. & Nagel, S. R., 1996. Rev. Mod. Phys., 68, 1259. And references therein.Google Scholar
Jewitt, D., Agarwal, J., Li, J., Weaver, H., Mutchler, M. & Larson, S., 2014. The Astrophysical Journal Letters, 784, L8.Google Scholar
Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M. & Larson, S., 2013. The Astrophysical Journal Letters, 778, L21.Google Scholar
JPL, 2012. Asteroid shape models. Accessed: 2015-09-13.Google Scholar
Leinhardt, Z., Richardson, D. & Quinn, T., 2000a. Icarus, 146, 133.Google Scholar
Leinhardt, Z. M., Richardson, D. C. & Quinn, T., 2000b. Icarus, 146, 133.Google Scholar
Luding, S., 1998. Physics of Dry Granular Media, NATO ASI Series, Dordrecht. Kluwer Academic Publishers.Google Scholar
Luding, S. & McNamara, S., 1998. Granular Matter, 1, 113.CrossRefGoogle Scholar
Makkonen, L., 2012. AIP Advances, 2, 012179.Google Scholar
Mitarai, N. & Nakanishi, H., 2003. Phys. Rev. E, 67, 021301.Google Scholar
Miyamoto, H., Yano, H., Scheeres, D. J., Abe, S., Barnouin-Jha, O., Cheng, A. F., Demura, H., Gaskell, R. W., Hirata, N., Ishiguro, M., Michikami, T., Nakamura, A. M., Nakamura, R., Saito, J. & Sasaki, S., 2007. Science, 316, 1011.Google Scholar
Moreau, J. J., 1994. Eur. J. Mech. A, 13, 93.Google Scholar
Murdoch, N., Rozitis, B., Nordstrom, K., Green, S. F., Michel, P., de Lophem, T. L. & Losert, W., 2013. Phys. Rev. Lett., 110, 018307.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M. E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S. A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M., Mukai, T., Yoshikawa, M. & Kawaguchi, J., 2011. Science, 333, 1113.Google Scholar
Parteli, E., Kroy, K., Tsoar, H., Andrade, J. S., J. & Pöschel, T., 2014. The European Physical Journal Special Topics, 223, 2269.Google Scholar
Pravec, P. & Harris, A. W., 2000. Icarus, 148, 12.Google Scholar
Richard, P., Nicodemi, M., Delannay, R., Ribiere, P. & Bideau, D., 2005. Nature Materials, 4, 121.Google Scholar
Richardson, D., Bottke, W., Love, S.et al., 1998. Icarus, 134, 47.Google Scholar
Richardson, D., Michel, P., Walsh, K. & Flynn, K., 2009. Planetary and Space Science, 57, 183. Catastrophic Disruption in the Solar SystemVII Workshop on Catastrophic Disruption in the Solar System.Google Scholar
Richardson, D. C., 1994. R. A. S. Monthly Notices, 269, 493.Google Scholar
Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., Bottke, W. F. Jr., & Asphaug, E., 2002. Asteroids III, 501.Google Scholar
Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. L. & Wilcox, B. B., 2002. Meteoritics and Planetary Science, 37, 1651.Google Scholar
Rozitis, B., MacLennan, E. & Emery, J. P., 2014. Nature, 512, 174.Google Scholar
Sánchez, D. P. & Scheeres, D. J., 2012. Icarus, 218, 876.Google Scholar
Sánchez, P. & Scheeres, D. J., 2011. The Astrophysical Journal, 727, 120.CrossRefGoogle Scholar
Sánchez, P. & Scheeres, D. J., 2014. ACM, Finland.Google Scholar
Sánchez, P. & Scheeres, D. J., 2014. Meteoritics & Planetary Science, 49, 788.Google Scholar
Sánchez, P., Swift, M. R. & Scheeres, D. J., 2009. AAS/Division for Planetary Sciences Meeting Abstracts #41, volume 41 of AAS/Division for Planetary Sciences Meeting Abstracts. #27.13–+.Google Scholar
Scheeres, D., 2015. Icarus, 247, 1.Google Scholar
Scheeres, D., Hartzell, C., Sánchez, P. & Swift, M., 2010. Icarus, 210, 968.Google Scholar
Scheeres, D. J., 2007. Icarus, 189, 370.Google Scholar
Schwartz, S. R., Michel, P. & Richardson, D. C., 2013. Icarus, 226, 67.Google Scholar
Schwartz, S. R., Richardson, D. C. & Michel, P., 2012. Granular Matter, 14, 363.CrossRefGoogle Scholar
Sharma, I., Jenkins, J. T. & Burns, J. A., 2009. Icarus, 200, 304.Google Scholar
Tanga, P., Comito, C., Paolicchi, P., Hestroffer, D., Cellino, A., Dell'Oro, A., Richardson, D. C., Walsh, K. J. & Delbo, M., 2009. The Astrophysical Journal Letters, 706, L197.Google Scholar
Thomas, P. C. & Robinson, M. S., 2005. Nature, 436, 366.Google Scholar
Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T., Uesugi, K., Nakano, T., Sandford, S. A., Noguchi, R., Matsumoto, T., Matsuno, J., Nagano, T., Imai, Y., Takeuchi, A., Suzuki, Y., Ogami, T., Katagiri, J., Ebihara, M., Ireland, T. R., Kitajima, F., Nagao, K., Naraoka, H., Noguchi, T., Okazaki, R., Yurimoto, H., Zolensky, M. E., Mukai, T., Abe, M., Yada, T., Fujimura, A., Yoshikawa, M. & Kawaguchi, J., 2011. Science, 333, 1125.Google Scholar
Walsh, K. J. & Richardson, D. C., 2006. Icarus, 180, 201.Google Scholar
Walsh, K. J., Richardson, D. C. & Michel, P., 2008. Nature, 454, 188.Google Scholar
Walsh, K. J., Richardson, D. C. & Michel, P., 2012. Icarus, 220, 514.Google Scholar
Yu, Y., Richardson, D. C., Michel, P., Schwartz, S. R. & Ballouz, R. L., 2014. Icarus, 242, 82.Google Scholar