Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T08:26:26.974Z Has data issue: false hasContentIssue false

Anomalous Cepheids: Updated Theoretical Period–Luminosity–Color and Period–Wesenheit Relations

Published online by Cambridge University Press:  06 February 2024

Giulia De Somma*
Affiliation:
INAF-Osservatorio astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy INAF-Osservatorio Astronomico d’Abruzzo, Via Maggini sn, 64100 Teramo, Italy
Marcella Marconi
Affiliation:
INAF-Osservatorio astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy
Santi Cassisi
Affiliation:
INAF-Osservatorio Astronomico d’Abruzzo, Via Maggini sn, 64100 Teramo, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Universitá di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
Roberto Molinaro
Affiliation:
INAF-Osservatorio astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy

Abstract

In the context of a project aimed to provide an updated theoretical scenario for various classes of radially pulsating stars, we present the first results obtained for anomalous Cepheids. By adopting reliable and updated evolutionary prescriptions concerning the luminosity levels for various core He-burning stellar models with masses suitable for entering the instability strip, we have computed nonlinear convective pulsation models for both fundamental and first-overtone mode anomalous Cepheids by exploring the impact of varying the metal abundance as well as the efficiency of super-adiabatic convection. These numerical simulations have allowed us to retrieve the boundaries of the instability strip and all relevant pulsation properties, namely period, amplitude, bolometric light and radial velocity curves. This theoretical scenario has been transformed into the Gaia photometric system to derive the first theoretical Period–Luminosity–Colour and Period–Wesenheit relations in the Gaia bands.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caputo, F. 1998, Astron. Astrophys. Rev., 9, 33. doi: 10.1007/s001590050014 Google Scholar
Castelli, F. & Kurucz, R. L. 2003, Proc. IAU Symp. 210, Poster A20. doi: 10.48550/arXiv.astro-ph/0405087 Google Scholar
Caputo, F., Castellani, V., Degl’Innocenti, S., et al. 2004, Astron. Astrophys., 424, 927. doi: 10.1051/0004-6361:20040307 Google Scholar
De Somma, G., Marconi, M., Molinaro, R., et al. 2020, Astrophys. J. Suppl. Ser., 247, 30. doi: 10.3847/1538-4365/ab7204 Google Scholar
De Somma, G., Marconi, M., Molinaro, R., et al. 2022, Astrophys. J. Suppl. Ser., 262, 25. doi: 10.3847/1538-4365/ac7f3b Google Scholar
Fiorentino, G., Limongi, M., Caputo, F., et al. 2006, Astron. Astrophys., 460, 155. doi: 10.1051/0004-6361:20065349 Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2016, Astron. Astrophys., 595, A2. doi: 10.1051/0004-6361/201629512 Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2018, Astron. Astrophys., 616, A1. doi: 10.1051/0004-6361/201833051 Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2021, Astron. Astrophys., 649, A1. doi: 10.1051/0004-6361/202039657 Google Scholar
Hidalgo, S. L., Pietrinferni, A., Cassisi, S., et al. 2018, Astrophys. J., 856, 125. doi: 10.3847/1538-4357/aab158 Google Scholar
Marconi, M., Fiorentino, G., & Caputo, F. 2004, Astron. Astrophys., 417, 1101. doi: 10.1051/0004-6361:20040020 Google Scholar
Marconi, M., Musella, I., & Fiorentino, G. 2005, Astrophys. J., 632, 590. doi: 10.1086/432790 Google Scholar
Martnez-Vázquez, C. E., Monelli, M., Cassisi, S., et al. 2021, Mon. Not. R. Astron. Soc., 508, 1064. doi: 10.1093/mnras/stab2493 Google Scholar
Monelli, M. & Fiorentino, G. 2022, Universe, 8, 191. doi: 10.3390/universe8030191 Google Scholar
Renzini, A., Mengel, J. G., & Sweigart, A. V. 1977, Astron. Astrophys., 56, 369 Google Scholar
Salaris, M. & Cassisi, S. 2005, Evolution of Stars and Stellar Populations, Salaris, M. & Cassisi, S., eds, p. 400. ISBN 0-470-09220-3. Wiley-VCH.Google Scholar
Soszyński, I., Udalski, A., Szymański, M. K., et al. 2015, Acta Astron., 65, 233. doi: 10.48550/arXiv.1508.00907 Google Scholar
Soszyński, I., Smolec, R., Udalski, A., et al. 2020, Astrophys. J. Lett., 901, L25. doi: 10.3847/2041-8213/abb817 Google Scholar
Ripepi, V., Marconi, M., Moretti, M. I., et al. 2014, Mon. Not. R. Astron. Soc., 437, 2307. doi: 10.1093/mnras/stt2047 Google Scholar