Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T23:35:19.575Z Has data issue: false hasContentIssue false

An empirical approach to the extragalactic background light from AEGIS galaxy SED-type fractions

Published online by Cambridge University Press:  17 August 2012

Alberto Domínguez*
Affiliation:
UCO/Lick Observatory, Dept. of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA Dept. of Physics, University of California, Santa Cruz, CA 95064, USA Now at: Dept. of Physics & Astronomy, University of Caliornia, Riverside, CA 92521, USA email: alberto.dominguez@ucr.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for γ-ray astronomy. However, the overall spectrum of the EBL between 0.1 and 1000 μm has never been determined directly, neither from observed luminosity functions (LFs), over a wide redshift range, nor from any multiwavelength observation of galaxy spectral energy distributions (SEDs). The evolving overall spectrum of the EBL is derived here utilizing a novel method based on observations only. It is emphasized that the local EBL seems already well constrained from the UV up to the mid-IR. Different independent methodologies such as direct measurement, galaxy counts, γ-ray attenuation and realistic EBL modelings point towards the same EBL intensity level. Therefore, a relevant contribution from Pop III stars to the local EBL seems unlikely.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aleksić, J., et al. 2011a, ApJ, 726, 58CrossRefGoogle Scholar
Aleksić, J., et al. 2011b, ApJ, 730, L8.CrossRefGoogle Scholar
Aleksić, J., et al. 2011c, A&A, 530, A4.Google Scholar
Bruzual, A. G. & Charlot, S. 1993, ApJ, 405, 538CrossRefGoogle Scholar
Bruzual, A. G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Charlot, S. & Fall, S. M. 2000, ApJ, 539, 718CrossRefGoogle Scholar
Chary, R.-R. & Pope, A. 2010, arXiv:1003.1731Google Scholar
Cirasuolo, M., et al. 2010, MNRAS, 401, 1166CrossRefGoogle Scholar
Davis, M., et al. 2007, ApJ, 660, L1.CrossRefGoogle Scholar
Domínguez, A., et al. 2011a, MNRAS, 410, 2556CrossRefGoogle Scholar
Domínguez, A., et al. 2011b, Proceeding of the 25th Texas Symposium, arXiv:1103.4534Google Scholar
Domínguez, A., Sánchez-Conde, M. A., & Prada, F. 2011c, JCAP (in press), arXiv:1106.1860CrossRefGoogle Scholar
Fazio, G. G., et al. 2004, ApJS, 154, 39CrossRefGoogle Scholar
Finke, J. D., Razzaque, S., & Dermer, C. D. 2010, ApJ, 712, 238CrossRefGoogle Scholar
Franceschini, A., Rodighiero, G., & Vaccari, M. 2008, A&A, 487, 837Google Scholar
Gilmore, R. C., Somerville, R. S., Primack, J. R., & Domínguez, A. 2011, arXiv:1104.0671Google Scholar
Hauser, M. G. & Dwek, E. 2001, ARA&A, 39, 249Google Scholar
Keenan, R. C., Barger, A. J., Cowie, L. L., & Wang, W.-H. 2010, ApJ, 723, 40CrossRefGoogle Scholar
Kneiske, T. M. & Dole, H. 2010, A&A, 515, A19.Google Scholar
Matsuoka, Y., Ienaka, N., Kawara, K., & Oyabu, S. 2011, ApJ, 736, 119CrossRefGoogle Scholar
Madau, P. & Pozzetti, L. 2000, MNRAS, 312, L9.CrossRefGoogle Scholar
Polletta, M., et al. 2007, ApJ, 663, 81CrossRefGoogle Scholar
Rieke, G. H., et al. 2009, ApJ, 692, 556CrossRefGoogle Scholar
Somerville, R. S., Gilmore, R. C., Primack, J. R., & Domínguez, A. 2011, arXiv:1104.0669Google Scholar