Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-24T16:52:59.007Z Has data issue: false hasContentIssue false

Amplitude variability in γ Dor and δ Sct stars observed by the Kepler spacecraft

Published online by Cambridge University Press:  27 October 2016

Joyce A. Guzik
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM USA 87545 email: joy@lanl.gov
Katie Kosak
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM USA 87545 email: joy@lanl.gov Florida Institute of Technology, Melbourne, FL USA 32901
Paul A. Bradley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM USA 87545 email: joy@lanl.gov
Jason Jackiewicz
Affiliation:
New Mexico State University, Las Cruces, NM USA 88003
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The NASA Kepler spacecraft data revealed a large number of multimode nonradially pulsating γ Dor and δ Sct variable star candidates. The Kepler high precision long time-series photometry makes it possible to study amplitude variations of the frequencies. We summarize recent literature on amplitude and frequency variations in pulsating variables. We are searching for amplitude variability in several dozen faint γ Doradus or δ Scuti variable-star candidates observed as part of the Kepler Guest Observer program. We apply several methods, including a Matlab-script wavelet analysis developed by J. Jackiewicz, and the wavelet technique of the VSTAR software (http://www.aavso.org/vstar-overview). Here we show results for two stars, KIC 2167444 and KIC 2301163. We discuss the magnitude and timescale of the amplitude variations, and the presence or absence of correlations between amplitude variations for different frequencies of a given star. Amplitude variations may be detectable using Kepler data even for stars with Kepler magnitude > 14 with low-amplitude frequencies (~100 ppm) using only one or a few quarters of long-cadence data. We discuss proposed causes of amplitude spectrum variability that will require further investigation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Balona, L. A., et al. 2013, MNRAS, 432, 2808 Google Scholar
Barceló Forteza, B., et al. 2015, A&A, 579, A133 Google Scholar
Bear, E. & Soker, N. 2014, MNRAS, 437, 1400 Google Scholar
Bell, K. J., et al. 2015, ApJ, 809, 14 CrossRefGoogle Scholar
Bowman, D. & Kurtz, D. 2014, MNRAS, 444, 209 CrossRefGoogle Scholar
Breger, M., et al. 2012, ApJ, 759, 62 Google Scholar
Breger, M. & Montgomery, M. 2014, ApJ, 783, 89 Google Scholar
Breger, M. & Pamyatnykh, A. A. 2006, MNRAS, 368, 571 Google Scholar
Chadid, M. & Preston, G. W. 2013, EAS, 63, 47 Google Scholar
Cox, A. N. 1998, ApJ, 496, 246 CrossRefGoogle Scholar
Dziembowski, W. & Krolikowska, M. 1985, AcA, 35, 5 Google Scholar
Engle, S. G. 2015, Ph.D. Thesis, James Cook University, 2015arXiv150402713EGoogle Scholar
Foster, G. 1996, AJ, 112, 1709 Google Scholar
Gutierrez-Soto, J., et al. 2010, 2010arXiv1010.1910GGoogle Scholar
Handler, G., et al. 2003, MNRAS, 340, 1031 Google Scholar
Hermes, J. J., et al. 2015, ASPC, 493, 59 Google Scholar
Holdsworth, D. L., et al. 2014, MNRAS, 443, 2049 Google Scholar
Huber, D., et al. 2011, ApJ, 743, 143 Google Scholar
Khokhuntod, P., et al. 2011, IBVS, in preparation, 2011arXiv1109.3840KGoogle Scholar
Kilkenny, D. 2010, Ap&SS, 329, 175 Google Scholar
Langfellner, J., et al. 2012, ASPC, 452, 203 Google Scholar
Medupe, R., et al. 2015 MNRAS, 446, 1347 Google Scholar
Percy, J. R. & Khatu, V. C. 2014, JAAVSO, 42, 1 Google Scholar
Percy, J. R. & Yook, J. Y. 2014, JAAVSO, 42, 245 Google Scholar
Pigulski, A. & Pojmanski, G. 2008, A&A, 477, 907 Google Scholar
Rostopchina, A., Breger, M., & Hansen, G. 2013, AAS, 22135424RGoogle Scholar
Toloza, O., et al. 2015, ASPC, 493, 253 Google Scholar
Vauclair, G., et al. 2012, ASPC, 462, 160 Google Scholar
Zhou, A.-Y. & Jiang, S.-Y. 2011, AJ, 142, 100 CrossRefGoogle Scholar