Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T03:47:04.289Z Has data issue: false hasContentIssue false

Advances and Challenges in Observations and Modeling of the Global-Sun Dynamics and Dynamo

Published online by Cambridge University Press:  20 January 2023

Alexander Kosovichev
Affiliation:
Center for Computational Heliophysics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, U.S.A. email: alexander.g.kosovichev@njit.edu NASA Ames Research Center, Moffett Field, CA 94035 U.S.A.
Gustavo Guerrero
Affiliation:
Center for Computational Heliophysics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, U.S.A. email: alexander.g.kosovichev@njit.edu Physics Department, Universidade Federal de Minas Gerais Av. Antonio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil email: guerrero@fisica.ufmg.br
Andrey Stejko
Affiliation:
Center for Computational Heliophysics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, U.S.A. email: alexander.g.kosovichev@njit.edu
Valery Pipin
Affiliation:
Institute of Solar-Terrestrial Physics, Russian Academy of Sciences Irkutsk, 664033, Russia email: pip@iszf.irk.ru
Alexander Getling
Affiliation:
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia email: A.Getling@mail.ru

Abstract

Computational heliophysics has shed light on the fundamental physical processes inside the Sun, such as the differential rotation, meridional circulation, and dynamo-generation of magnetic fields. However, despite the substantial advances, the current results of 3D MHD simulations are still far from reproducing helioseismic inferences and surface observations. The reason is the multi-scale nature of the solar dynamics, covering a vast range of scales, which cannot be solved with the current computational resources. In such a situation, significant progress has been achieved by the mean-field approach, based on the separation of small-scale turbulence and large-scale dynamics. The mean-field simulations can reproduce solar observations, qualitatively and quantitatively, and uncover new phenomena. However, they do not reveal the complex physics of large-scale convection, solar magnetic cycles, and the magnetic self-organization that causes sunspots and solar eruptions. Thus, developing a synergy of these approaches seems to be a necessary but very challenging task.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekki, Y. and Yokoyama, T. 2017, ApJ 835(1), 9 CrossRefGoogle Scholar
Böning, V. G. A., Roth, M., Jackiewicz, J., and Kholikov, S. 2017, ApJ 845(1), 2 CrossRefGoogle Scholar
Brandenburg, A. 2005, ApJ 625(1), 539 Google Scholar
Brandenburg, A., Moss, D., and Tuominen, I. 1992, A&A 265, 328 Google Scholar
Charbonneau, P. and Smolarkiewicz, P. K. 2013, Science 340(6128), 42 CrossRefGoogle Scholar
Chen, R. and Zhao, J. 2017, ApJ 849(2), 144 CrossRefGoogle Scholar
Chen, R. and Zhao, J. 2018, ApJ 853(2), 161 CrossRefGoogle Scholar
Durney, B. R. 1999, ApJ 511, 945 CrossRefGoogle Scholar
Duvall, T. L., J., Jefferies, S. M., Harvey, J. W., and Pomerantz, M. A. 1993, Nat 362(6419), 430CrossRefGoogle Scholar
Getling, A. V., Kosovichev, A. G., and Zhao, J. 2021, ApJ 908(2), L50 CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., and Smolarkiewicz, P. K. 2010, ApJ 715(2), L133 Google Scholar
Gizon, L., Cameron, R. H., Pourabdian, M., Liang, Z.-C., Fournier, D., Birch, A. C., and Hanson, C. S. 2020a, Science 368(6498), 1469 Google Scholar
Gizon, L., Cameron, R. H., Pourabdian, M., Liang, Z.-C., Fournier, D., Birch, A. C., and Hanson, C. S. 2020b, Science 368(6498), 1469 CrossRefGoogle Scholar
Gough, D. O. 1969, Journal of Atmospheric Sciences 26(3), 448 Google Scholar
Gough, D. O. and Toomre, J. 1983, Sol. Phys. 82(1-2), 401 Google Scholar
Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., and Mansour, N. N. 2016, ApJ 819(2), 104 Google Scholar
Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G., and Mansour, N. N. 2013, ApJ 779(2), 176 Google Scholar
Guerrero, G., Zaire, B., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., and Mansour, N. N. 2019, ApJ 880(1), 6 CrossRefGoogle Scholar
Hartlep, T., Zhao, J., Kosovichev, A. G., and Mansour, N. N. 2013, ApJ 762(2), 132 CrossRefGoogle Scholar
Hartlep, T., Zhao, J., Mansour, N. N., and Kosovichev, A. G. 2008, ApJ 689(2), 1373 CrossRefGoogle Scholar
Hill, F. 1989, ApJ 343, L69 CrossRefGoogle Scholar
Jackiewicz, J., Serebryanskiy, A., and Kholikov, S. 2015, ApJ 805(2), 133 CrossRefGoogle Scholar
Kholikov, S., Serebryanskiy, A., and Jackiewicz, J. 2014, ApJ 784(2), 145 CrossRefGoogle Scholar
Khomenko, E., Kosovichev, A., Collados, M., Parchevsky, K., and Olshevsky, V. 2009, ApJ 694(1), 411 CrossRefGoogle Scholar
Kitchatinov, L. L., Pipin, V. V., and Ruediger, G. 1994, Astronomische Nachrichten 315, 157 CrossRefGoogle Scholar
Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., and Wray, A. A. 2015, ApJ 809(1), 84 CrossRefGoogle Scholar
Komm, R. 2021, Sol. Phys. 296(12), 174 CrossRefGoogle Scholar
Komm, R., González Hernández, I., Hill, F., Bogart, R., Rabello-Soares, M. C., and Haber, D. 2012, Sol. Phys. p. 177 Google Scholar
Kosovichev, A. G. and Duvall, T. L., J. 1997, in Pijpers, F. P., Christensen-Dalsgaard, J., and Rosenthal, C. S. (eds.), SCORe’96 : Solar Convection and Oscillations and their Relationship, Vol. 225 of Astrophysics and Space Science Library, pp 241–260Google Scholar
Kosovichev, A. G. and Pipin, V. V. 2019, ApJ 871(2), L20 CrossRefGoogle Scholar
Kosovichev, A. G. and Zhao, J. 2016, in Rozelot, J.-P. and Neiner, C. (eds.), Lecture Notes in Physics, Berlin Springer Verlag, Vol. 914, p. 25Google Scholar
Krause, F. and Rädler, K.-H. 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Berlin: Akademie-Verlag Google Scholar
Lin, C.-H. and Chou, D.-Y. 2018, ApJ 860(1), 48 CrossRefGoogle Scholar
Miesch, M. S., Brown, B. P., Browning, M. K., Brun, A. S., and Toomre, J. 2011, in Brummell, N. H., Brun, A. S., Miesch, M. S. , and Ponty, Y. (eds.), IAU Symposium, Vol. 271 of IAU Symposium, pp 261–269CrossRefGoogle Scholar
Parchevsky, K. V. and Kosovichev, A. G. 2009, ApJ 694(1), 573 CrossRefGoogle Scholar
Parchevsky, K. V., Zhao, J., Hartlep, T., and Kosovichev, A. G. 2014, ApJ 785(1), 40 CrossRefGoogle Scholar
Parker, E. N. 1955, ApJ 122, 293 CrossRefGoogle Scholar
Pipin, V. V. 2004, Astronomy Reports 48, 418 Google Scholar
Pipin, V. V. 2021, arXiv e-prints p. arXiv:2112.09460Google Scholar
Pipin, V. V. and Kitchatinov, L. L. 2000, Astronomy Reports 44, 771 CrossRefGoogle Scholar
Pipin, V. V. and Kosovichev, A. G. 2011, ApJ 727(2), L45 CrossRefGoogle Scholar
Pipin, V. V. and Kosovichev, A. G. 2018, ApJ 854(1), 67 CrossRefGoogle Scholar
Pipin, V. V. and Kosovichev, A. G. 2019, ApJ 887(2), 215 Google Scholar
Pipin, V. V. and Kosovichev, A. G. 2020, ApJ 900(1), 26 CrossRefGoogle Scholar
Reinecke, M. and Seljebotn, D. S. 2013, A&A 554, A112 CrossRefGoogle Scholar
Rempel, M. 2006, ApJ 647, 662 CrossRefGoogle Scholar
Rempel, M., Schüssler, M., and Knölker, M. 2009, ApJ 691(1), 640 CrossRefGoogle Scholar
Russell, C. T., Luhmann, J. G., and Jian, L. K. 2020, in Kosovichev, A., Strassmeier, S., and Jardine, M. (eds.), Solar and Stellar Magnetic Fields: Origins and Manifestations, Vol. 354, pp 127–133Google Scholar
Schad, A., Timmer, J., and Roth, M. 2013, ApJ 778(2), L38 CrossRefGoogle Scholar
Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M. 1978, Geophys. Res. Lett. 5(5), 411 CrossRefGoogle Scholar
Schou, J., Antia, H. M., Basu, S., Bogart, R. S., Bush, R. I., Chitre, S. M., Christensen-Dalsgaard, J., Di Mauro, M. P., Dziembowski, W. A., Eff-Darwich, A., Gough, D. O., Haber, D. A., Hoeksema, J. T., Howe, R., Korzennik, S. G., Kosovichev, A. G., Larsen, R. M., Pijpers, F. P., Scherrer, P. H., Sekii, T., Tarbell, T. D., Title, A. M., Thompson, M. J., and Toomre, J. 1998, ApJ 505(1), 390 CrossRefGoogle Scholar
Simitev, R. D., Kosovichev, A. G., and Busse, F. H. 2015, ApJ 810(1), 80 CrossRefGoogle Scholar
Smolarkiewicz, P. K. 2006, International Journal for Numerical Methods in Fluids 50(10), 1123 Google Scholar
Smolarkiewicz, P. K. and Charbonneau, P. 2013, Journal of Computational Physics 236, 608 Google Scholar
Stein, R. F. and Nordlund, Å. 2012, ApJ 753, L13 CrossRefGoogle Scholar
Stejko, A. M., Kosovichev, A. G., and Mansour, N. N. 2021a, ApJS 253(1), 9 CrossRefGoogle Scholar
Stejko, A. M., Kosovichev, A. G., and Pipin, V. V. 2021b, ApJ 911(2), 90 Google Scholar
Stenflo, J. O. 2012, A&A 547, A93 CrossRefGoogle Scholar
Zhao, J., Bogart, R. S., Kosovichev, A. G., Duvall, T. L., J., and Hartlep, T. 2013, ApJ 774(2), L29Google Scholar
Zhao, J., Kosovichev, A. G., and Bogart, R. S. 2014, ApJ 789(1), L7 CrossRefGoogle Scholar