Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T06:33:27.706Z Has data issue: false hasContentIssue false

Torun methanol maser monitoring program

Published online by Cambridge University Press:  07 February 2024

P. Wolak*
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
M. Szymczak
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
A. Bartkiewicz
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
M. Durjasz
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
A. Kobak
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
M. Olech
Affiliation:
Space Radio-Diagnostic Research Center, Faculty of Geoengineering, University of Warmia and Mazury, Oczapowskiego 2, PL-10-719 Olsztyn, Poland

Abstract

Since 2009, the Torun 32 m radio telescope has been used to monitor a sample of ∼140 sources of the 6.7 GHz methanol maser emission. In 2022, the sample was extended to about 250 targets. Approximately three-quarters show variability greater than 10% on timescales of a few weeks to several years. The most significant results are detecting a few flare events and discovering about a dozen periodic variables with periods ranging from a month to a few years. Here, we present the preliminary analysis of the properties of periodic masers.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, E. D., Hofner, P., Goss, W. M., et al. 2010, ApJ, 717, L133 10.1088/2041-8205/717/2/L133CrossRefGoogle Scholar
Durjasz, M., Szymczak, M., Olech, M., Bartkiewicz, A. 2022, A&A, 663, A123 Google Scholar
Inayoshi, K., Sugiyama, K., Hosokawa, T., Motogi, K., & Tanaka, K. E. I. 2013, ApJ, 769, L20 10.1088/2041-8205/769/2/L20CrossRefGoogle Scholar
Morgan, J., van der Walt, D. J., Chibueze, J. O., & Zhang, Q. 2021, MNRAS, 507, 1138 10.1093/mnras/stab2185CrossRefGoogle Scholar
Olech, M., Szymczak, M., Wolak, P., Sarniak, R., & Bartkiewicz, A. 2019, MNRAS, 486, 1236 10.1093/mnras/stz926CrossRefGoogle Scholar
Olech, M., Durjasz, M., Szymczak, M., Bartkiewicz. 2022, A&A, 661, A114 Google Scholar
Parfenov, S. Y. & Sobolev, A. M. 2014, MNRAS, 444, 620 10.1093/mnras/stu1481CrossRefGoogle Scholar
Szymczak, M., Olech, M., Sarniak, R., Wolak, P., Bartkiewicz, A. 2018, MNRAS, 474, 219 10.1093/mnras/stx2693CrossRefGoogle Scholar
Tanabe, Y., Yonekura, Y., MacLeod, G C. 2023, PASJ, 75, 2 10.1093/pasj/psad002CrossRefGoogle Scholar
van der Walt, D. J. 2011, AJ, 141, 152 10.1088/0004-6256/141/5/152CrossRefGoogle Scholar