Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T01:53:17.100Z Has data issue: false hasContentIssue false

Hydrodynamic disk solutions for Be stars using HDUST

Published online by Cambridge University Press:  16 August 2023

C. Arcos
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
M. Curé
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
I. Araya
Affiliation:
Vicerrectoría de Investigación, Universidad Mayor, Chile
A. Rubio
Affiliation:
Instituto de astronomia, geofísica e ciências atmosféricas, Universidade de São Paulo, Brazil
A. Carciofi
Affiliation:
Instituto de astronomia, geofísica e ciências atmosféricas, Universidade de São Paulo, Brazil

Abstract

. In this work, we implemented a hydrodynamical solution for fast rotating stars, which leaves high values of mass-loss rates and low terminal velocities of the wind. This 1D density distribution adopts a viscosity mimicking parameter which simulates a quasi-Keplerian motion. Then, it is converted to a volumetric density considering vertical hydrostatic equilibrium using a power-law scale height, as usual in viscous decretion disk models. We calculate the theoretical hydrogen emission lines and the spectral energy distribution utilizing the radiative transfer code HDUST. Our disk-wind structures are in agreement with viscous decretions disk models.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, I., Jones, C. E., Curé, M., et al. 2017, ApJ, 846, 2 10.3847/1538-4357/aa835eCrossRefGoogle Scholar
Arcos, C., Jones, C. E., Sigut, T. A. A., Kanaan, S., & Curé, M. 2017, ApJ, 842, 48 10.3847/1538-4357/aa6f5fCrossRefGoogle Scholar
Bjorkman, J. E. & Carciofi, A. C. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 343, Astronomical Polarimetry: Current Status and Future Directions, ed. A. Adamson, C. Aspin, C. Davis, & T. Fujiyoshi, 270Google Scholar
Bjorkman, J. E. & Wood, K. 1997, in American Astronomical Society Meeting Abstracts, Vol. 191, American Astronomical Society Meeting Abstracts, 12.04Google Scholar
Carciofi, A. C. & Bjorkman, J. E. 2006, ApJ, 639, 1081 10.1086/499483CrossRefGoogle Scholar
Carciofi, A. C. & Bjorkman, J. E. 2008, ApJ, 684, 1374 10.1086/589875CrossRefGoogle Scholar
Carciofi, A. C., Okazaki, A. T., Le Bouquin, J. B., et al. 2009, A&A, 504, 915 10.1051/0004-6361/200810962CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 10.1086/153315CrossRefGoogle Scholar
Chen, H. & Marlborough, J. M. 1994, ApJ, 427, 1005 10.1086/174207CrossRefGoogle Scholar
Claret, A. 2000, A&A, 363, 1081 Google Scholar
Curé, M. 2004, ApJ, 614, 929 10.1086/423776CrossRefGoogle Scholar
de Araujo, F. X. 1995, A&A, 298, 179 Google Scholar
Friend, D. B. & Abbott, D. C. 1986, ApJ, 311, 701 10.1086/164809CrossRefGoogle Scholar
Haubois, X., Carciofi, A. C., Rivinius, T., Okazaki, A. T., & Bjorkman, J. E. 2012, ApJ, 756, 156 10.1088/0004-637X/756/2/156CrossRefGoogle Scholar
Jones, C. E., Tycner, C., Sigut, T. A. A., Benson, J. A., & Hutter, D. J. 2008, ApJ, 687, 598 10.1086/591726CrossRefGoogle Scholar
Kee, N. D., Owocki, S., & Kuiper, R. 2018 a, MNRAS, 474, 84710.1093/mnras/stx2772CrossRefGoogle Scholar
Kee, N. D., Owocki, S., & Kuiper, R. 2018 b, MNRAS, 479, 463310.1093/mnras/sty1721CrossRefGoogle Scholar
Curà Klement, R., Carciofi, A. C., Rivinius, T., et al. 2015, A&A, 584, A85 10.1051/0004-6361/201526535CrossRefGoogle Scholar
Kurucz, R. 1994, Solar abundance model atmospheres for 0, 19Google Scholar
Lee, U., Osaki, Y., & Saio, H. 1991, MNRAS, 250, 432 10.1093/mnras/250.2.432CrossRefGoogle Scholar
Okazaki, A. T. 2001, PASJ, 53, 119 10.1093/pasj/53.1.119CrossRefGoogle Scholar
Rivinius, T., Carciofi, A. C., & Martayan, C. 2013, AAPR, 21, 69 10.1007/s00159-013-0069-0CrossRefGoogle Scholar
Shakura, N. I. 1973, SOVAST, 16, 756 Google Scholar
Silaj, J., Jones, C. E., Carciofi, A. C., et al. 2016, ApJ, 826, 81 10.3847/0004-637X/826/1/81CrossRefGoogle Scholar
Solar, M., Arcos, C., Curé, M., Levenhagen, R. S., & Araya, I. 2022, MNRAS, 511, 4404 10.1093/mnras/stac202CrossRefGoogle Scholar
Vieira, R. G., Carciofi, A. C., Bjorkman, J. E., et al. 2017, MNRAS, 464, 3071 10.1093/mnras/stw2542CrossRefGoogle Scholar
Zorec, J., Frémat, Y., Domiciano de Souza, A., et al. 2016, A&A, 595, A132 10.1051/0004-6361/201628760CrossRefGoogle Scholar