Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-29T13:19:19.244Z Has data issue: false hasContentIssue false

Global Properties of Star-Forming Galaxies from Ultraviolet Spectroscopy

Published online by Cambridge University Press:  29 August 2024

Claus Leitherer*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA
Ilyse Clark*
Affiliation:
Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA
Karla Arellano-Córdova*
Affiliation:
Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA
Danielle A. Berg*
Affiliation:
Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA

Abstract

We analyzed archival HST and IUE ultraviolet spectra of 29 nearby star-forming galaxies. The range of aperture sizes permits studies of the galaxy properties over pc to kpc scales. We measured line strengths and spectral energy distributions over the 1200 – 1300 Åwavelength range and established trends with galaxy properties. Updated oxygen abundances were measured from ancillary optical data. Star-formation rates and internal dust attenuations were derived from comparison with synthesis models. The interstellar absorption lines are heavily saturated, yet scale with oxygen abundance. We interpret this as due to macroscopic velocities arising in a turbulent ISM and large-scale outflows. The stellar-wind lines also scale with oxygen abundance. As these lines are shaped by mass loss, which is driven by the Fe abundance, we can study the α-element/Fe ratio in these galaxies.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, D. A., James, B. L., King, T., et al. 2022, arXiv:2203.07357 Google Scholar
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582 CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682 Google Scholar
Charbonnel, C., Meynet, G., Maeder, A., Schaller, G., & Schaerer, D. 1993, A&AS, 101, 415 Google Scholar
Ekström, S., Eggenberger, P., Meynet, G., et al. 2012, A&A, 537, 146 Google Scholar
Georgy, C., Ekström, S., Eggenberger, P., et al. 2013, A&A, 558, 103 Google Scholar
Heckman, T. M., Robert, C., Leitherer, C., Garnett, D., & van der Rydt, F. 1998, ApJ, 503, 646 Google Scholar
Kroupa, P. 2008, in: Knapen, J. H., Mahoney, T. J., & Vazdekis, A. (eds.), Pathways Through an Eclectic Universe, ASP Conf. Ser. 390, (San Francisco, CA: ASP), p. 3Google Scholar
Leitherer, C. 2020, Galaxies, 8, 13Google Scholar
Leitherer, C., Byler, N., Lee, J. C., & Levesque, E. M. 2018, ApJ, 865, 55 Google Scholar
Leitherer, C., Ekström, S., Meynet, G., et al. 2014, ApJS, 212, 14 CrossRefGoogle Scholar
Leitherer, C., Tremonti, C. A., Heckman, T. M., & Calzetti, D. 2011, AJ, 141, 37 CrossRefGoogle Scholar
Meynet, G., Schaller, G., Schaerer, D., & Charbonnel, C. 1994, A&AS, 103, 97 Google Scholar
Reddy, N. A., Oesch, P. A., Bouwens, R. J., et al. 2018, ApJ, 853, 56 Google Scholar
Schaerer, D., Charbonnel, C., Meynet, G., Maeder, A., & Schaller, G. 1993a, A&AS, 102, 339 Google Scholar
Schaerer, D., Meynet, G., Maeder, A., & Schaller, G. 1993b, A&AS, 98, 523 Google Scholar
Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269 Google Scholar
Vink, J. S. 2022, arXiv:2109.08164 Google Scholar
Weedman, D. W., Feldman, F. R., Balzano, V. A., et al. 1981, ApJ, 248, 105 CrossRefGoogle Scholar