Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T23:58:55.245Z Has data issue: false hasContentIssue false

3D velocity fields from methanol and water masers in an intermediate-mass protostar

Published online by Cambridge University Press:  24 July 2012

C. Goddi
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany email: cgoddi@eso.org
L. Moscadelli
Affiliation:
INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
A. Sanna
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report multi-epoch VLBI observations of molecular masers towards the high-mass star forming region AFGL 5142, leading to the determination of the 3D velocity field of circumstellar molecular gas at radii <0.″23 (or 400 AU) from the protostar MM–1. Our observations of CH3OH maser emission enabled, for the first time, a direct measurement of infall of a molecular envelope on to an intermediate-mass protostar (radius of 300 AU, velocity of 5 km s−1, and infall rate of 6 × 10−4n8M yr−1, where n8 is the ambient volume density in units of 108 cm−3). In addition, our measurements of H2O maser (and radio continuum) emission revealed a collimated bipolar molecular outflow (and ionized jet) from MM–1. The evidence of simultaneous accretion and outflow at small spatial scales, makes AFGL 5142 an extremely compelling target for high-angular resolution studies of high-mass star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Beltrán, M. T., Cesaroni, R., Neri, R., & Codella, C. 2011, A&A, 525, A151Google Scholar
Cragg, D. M., Sobolev, A. M., & Godfrey, P. D. 2005, MNRAS, 360, 533CrossRefGoogle Scholar
Goddi, C. & Moscadelli, L. 2006, A&A, 447, 577Google Scholar
Goddi, C., Moscadelli, L., Sanna, A., Cesaroni, R., & Minier, V. 2007, A&A, 461, 1027Google Scholar
Goddi, C., Moscadelli, L., & Sanna, A. 2011, A&A (Letters), 535, L8Google Scholar
Kaufman, M. J. & Neufeld, D. A. 1996, ApJ, 456, 250CrossRefGoogle Scholar
Lee, C.-F., Mao, Y.-Y., & Reipurth, B. 2009, ApJ, 694, 1395CrossRefGoogle Scholar
Palau, A., Fuente, A., Girart, J. M., et al. 2011, ApJ (Letters), 743, L32CrossRefGoogle Scholar
Palla, F. & Stahler, S. W. 1993, ApJ, 418, 414CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Zheng, X. W., et al. 2009, ApJ, 700, 137CrossRefGoogle Scholar
Sanna, A., Moscadelli, L., Cesaroni, R., et al. 2010, A&A, 517, A71Google Scholar
Zhang, Q., Hunter, T. R., Beuther, H., et al. 2007, ApJ, 658, 1152Google Scholar