Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-23T13:00:45.808Z Has data issue: false hasContentIssue false

A 3D hydrodynamic simulation of a black hole outflow in a dwarf spheroidal galaxy

Published online by Cambridge University Press:  30 October 2019

Gustavo A. Lanfranchi
Affiliation:
Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP, Brazil email: gustavo.lanfranchi@cruzeirodosul.edu.br
Anderson Caproni
Affiliation:
Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP, Brazil email: gustavo.lanfranchi@cruzeirodosul.edu.br
Roberto Hazenfratz
Affiliation:
Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP, Brazil email: gustavo.lanfranchi@cruzeirodosul.edu.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results from a non-cosmological, three-dimensional hydrodynamic simulation of an outflow from an intermediate-mass black hole in Dwarf Spheroidal Galaxies. Assuming an initial baryonic-to-dark-matter ratio derived from the CMB radiation and a cored, static dark matter potential, we evolved the galactic gas distribution over 3 Gyr, taking into account the outflow of a black hole. Our results indicate that in a homogeneous medium the outflow propagates freely in both directions with the same velocity and its capable of removing a fraction of the gas from the galaxy (it depends on the initial conditions of the outflow). When the SNe are taken into account, the effect of the outflow is substantially reduced. It is necessary an initial velocity around 1000 km/s and a density larger than 0.003 particles.cm−3 for the outflow to propagate. In these conditions, the removal of gas from the galaxy is almost negligible at the end of the 3 Gyr of the simulation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Caproni, A., Lanfranchi, G. A., Luiz da Silva, A. & Falceta-Gonçalves, D. 2015, ApJ, 805, 109 10.1088/0004-637X/805/2/109CrossRefGoogle Scholar
Caproni, A., Lanfranchi, G. A., Campos Baio, G. H., Kowal, G. & Falceta-Gonçalves, D. 2017, ApJ, 838, 99 10.3847/1538-4357/aa6002CrossRefGoogle Scholar
Lanfranchi, G. A., & Matteucci, F. 2007, A&A, 468, 927 Google Scholar
Lora, V., Sànchez-Salcedo, F. J., Raga, A. C., & Esquivel, A. 2009, ApJ (Letters), 609, 113 10.1088/0004-637X/699/2/L113CrossRefGoogle Scholar
Moran, E. C., Shahinyan, K., Sugarman, H. R., Vélez, D. O., & Eracleous, M. 2014, AJ, 148, 136 10.1088/0004-6256/148/6/136CrossRefGoogle Scholar
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228 10.1086/513316CrossRefGoogle Scholar